Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell
In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these con...
Ausführliche Beschreibung
Autor*in: |
Yu Wang [verfasserIn] Jingbin Lu [verfasserIn] Renzhou Zheng [verfasserIn] Xiaoyi Li [verfasserIn] Yumin Liu [verfasserIn] Xue Zhang [verfasserIn] Yuehui Zhang [verfasserIn] Ziyi Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: AIP Advances - AIP Publishing LLC, 2011, 11(2021), 6, Seite 065110-065110-9 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:6 ; pages:065110-065110-9 |
Links: |
---|
DOI / URN: |
10.1063/5.0053917 |
---|
Katalog-ID: |
DOAJ056399278 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056399278 | ||
003 | DE-627 | ||
005 | 20230308201236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1063/5.0053917 |2 doi | |
035 | |a (DE-627)DOAJ056399278 | ||
035 | |a (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Yu Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. | ||
653 | 0 | |a Physics | |
700 | 0 | |a Jingbin Lu |e verfasserin |4 aut | |
700 | 0 | |a Renzhou Zheng |e verfasserin |4 aut | |
700 | 0 | |a Xiaoyi Li |e verfasserin |4 aut | |
700 | 0 | |a Yumin Liu |e verfasserin |4 aut | |
700 | 0 | |a Xue Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yuehui Zhang |e verfasserin |4 aut | |
700 | 0 | |a Ziyi Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIP Advances |d AIP Publishing LLC, 2011 |g 11(2021), 6, Seite 065110-065110-9 |w (DE-627)641391706 |w (DE-600)2583909-3 |x 21583226 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:6 |g pages:065110-065110-9 |
856 | 4 | 0 | |u https://doi.org/10.1063/5.0053917 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1063/5.0053917 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2158-3226 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 6 |h 065110-065110-9 |
author_variant |
y w yw j l jl r z rz x l xl y l yl x z xz y z yz z c zc |
---|---|
matchkey_str |
article:21583226:2021----::hoeiasuyfhgefcecgpieeoucineaoticlcmaewtmtli |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1063/5.0053917 doi (DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 DE-627 ger DE-627 rakwb eng QC1-999 Yu Wang verfasserin aut Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. Physics Jingbin Lu verfasserin aut Renzhou Zheng verfasserin aut Xiaoyi Li verfasserin aut Yumin Liu verfasserin aut Xue Zhang verfasserin aut Yuehui Zhang verfasserin aut Ziyi Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 11(2021), 6, Seite 065110-065110-9 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:11 year:2021 number:6 pages:065110-065110-9 https://doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 kostenfrei http://dx.doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6 065110-065110-9 |
spelling |
10.1063/5.0053917 doi (DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 DE-627 ger DE-627 rakwb eng QC1-999 Yu Wang verfasserin aut Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. Physics Jingbin Lu verfasserin aut Renzhou Zheng verfasserin aut Xiaoyi Li verfasserin aut Yumin Liu verfasserin aut Xue Zhang verfasserin aut Yuehui Zhang verfasserin aut Ziyi Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 11(2021), 6, Seite 065110-065110-9 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:11 year:2021 number:6 pages:065110-065110-9 https://doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 kostenfrei http://dx.doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6 065110-065110-9 |
allfields_unstemmed |
10.1063/5.0053917 doi (DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 DE-627 ger DE-627 rakwb eng QC1-999 Yu Wang verfasserin aut Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. Physics Jingbin Lu verfasserin aut Renzhou Zheng verfasserin aut Xiaoyi Li verfasserin aut Yumin Liu verfasserin aut Xue Zhang verfasserin aut Yuehui Zhang verfasserin aut Ziyi Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 11(2021), 6, Seite 065110-065110-9 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:11 year:2021 number:6 pages:065110-065110-9 https://doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 kostenfrei http://dx.doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6 065110-065110-9 |
allfieldsGer |
10.1063/5.0053917 doi (DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 DE-627 ger DE-627 rakwb eng QC1-999 Yu Wang verfasserin aut Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. Physics Jingbin Lu verfasserin aut Renzhou Zheng verfasserin aut Xiaoyi Li verfasserin aut Yumin Liu verfasserin aut Xue Zhang verfasserin aut Yuehui Zhang verfasserin aut Ziyi Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 11(2021), 6, Seite 065110-065110-9 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:11 year:2021 number:6 pages:065110-065110-9 https://doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 kostenfrei http://dx.doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6 065110-065110-9 |
allfieldsSound |
10.1063/5.0053917 doi (DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 DE-627 ger DE-627 rakwb eng QC1-999 Yu Wang verfasserin aut Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. Physics Jingbin Lu verfasserin aut Renzhou Zheng verfasserin aut Xiaoyi Li verfasserin aut Yumin Liu verfasserin aut Xue Zhang verfasserin aut Yuehui Zhang verfasserin aut Ziyi Chen verfasserin aut In AIP Advances AIP Publishing LLC, 2011 11(2021), 6, Seite 065110-065110-9 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:11 year:2021 number:6 pages:065110-065110-9 https://doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 kostenfrei http://dx.doi.org/10.1063/5.0053917 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 6 065110-065110-9 |
language |
English |
source |
In AIP Advances 11(2021), 6, Seite 065110-065110-9 volume:11 year:2021 number:6 pages:065110-065110-9 |
sourceStr |
In AIP Advances 11(2021), 6, Seite 065110-065110-9 volume:11 year:2021 number:6 pages:065110-065110-9 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
AIP Advances |
authorswithroles_txt_mv |
Yu Wang @@aut@@ Jingbin Lu @@aut@@ Renzhou Zheng @@aut@@ Xiaoyi Li @@aut@@ Yumin Liu @@aut@@ Xue Zhang @@aut@@ Yuehui Zhang @@aut@@ Ziyi Chen @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
641391706 |
id |
DOAJ056399278 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056399278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0053917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056399278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renzhou Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yumin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuehui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">11(2021), 6, Seite 065110-065110-9</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:065110-065110-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0053917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0053917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="h">065110-065110-9</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Yu Wang |
spellingShingle |
Yu Wang misc QC1-999 misc Physics Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
authorStr |
Yu Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)641391706 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21583226 |
topic_title |
QC1-999 Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIP Advances |
hierarchy_parent_id |
641391706 |
hierarchy_top_title |
AIP Advances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)641391706 (DE-600)2583909-3 |
title |
Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
ctrlnum |
(DE-627)DOAJ056399278 (DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19 |
title_full |
Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
author_sort |
Yu Wang |
journal |
AIP Advances |
journalStr |
AIP Advances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
065110 |
author_browse |
Yu Wang Jingbin Lu Renzhou Zheng Xiaoyi Li Yumin Liu Xue Zhang Yuehui Zhang Ziyi Chen |
container_volume |
11 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu Wang |
doi_str_mv |
10.1063/5.0053917 |
author2-role |
verfasserin |
title_sort |
theoretical study of a high-efficiency gap–si heterojunction betavoltaic cell compared with metal–si schottky barrier betavoltaic cell |
callnumber |
QC1-999 |
title_auth |
Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
abstract |
In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. |
abstractGer |
In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. |
abstract_unstemmed |
In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell |
url |
https://doi.org/10.1063/5.0053917 https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19 http://dx.doi.org/10.1063/5.0053917 https://doaj.org/toc/2158-3226 |
remote_bool |
true |
author2 |
Jingbin Lu Renzhou Zheng Xiaoyi Li Yumin Liu Xue Zhang Yuehui Zhang Ziyi Chen |
author2Str |
Jingbin Lu Renzhou Zheng Xiaoyi Li Yumin Liu Xue Zhang Yuehui Zhang Ziyi Chen |
ppnlink |
641391706 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1063/5.0053917 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T20:37:07.546Z |
_version_ |
1803591643352268800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056399278</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0053917</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056399278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ118ab67d0f6f44b381dbaf7dbafadf19</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yu Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this work, energy converters, which contain a GaP–Si heterojunction and Si-based Schottky barrier diodes with Al, Ti, Ag, and W, are used to convert 2 μm-thick 63Ni radioactive source energy into electrical energy. First, energy deposition distributions of the 63Ni radioactive source in these converters are simulated by using the Monte Carlo method. Then, the electrical output properties of the 63Ni/GaP–Si cell and 63Ni/metal–Si cell are determined through the numerical calculation. For the 63Ni/GaP–Si cell, with the optimized thickness of the GaP layer and doping concentration of Si, the maximum output power density and the conversion efficiency are 0.189 µW cm−2 and 1.83%, respectively. For the Si-based Schottky barrier cells with Al, Ti, Ag, and W, the 63Ni/Al–Si cell has the best electrical output properties with the same thickness of the metal layer and doping concentration of Si. When the thickness of metal Al is 0.1 µm and the doping concentration Na is 1 × 1013 cm−3, the maximum output power density and the conversion efficiency are 0.121 µW cm−2 and 1.18%, respectively. The calculation results indicate that the 63Ni/GaP–Si battery has better electrical output properties than the 63Ni/Al–Si Schottky battery. These results are valuable for fabricating practical batteries.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Renzhou Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyi Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yumin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuehui Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">11(2021), 6, Seite 065110-065110-9</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:065110-065110-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0053917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/118ab67d0f6f44b381dbaf7dbafadf19</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0053917</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="h">065110-065110-9</subfield></datafield></record></collection>
|
score |
7.401906 |