Biodegradable Piezoelectric Transducer for Powering Transient Implants
Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains und...
Ausführliche Beschreibung
Autor*in: |
Sophia Selvarajan [verfasserIn] Albert Kim [verfasserIn] Seung Hyun Song [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 68219-68225 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:68219-68225 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2985993 |
---|
Katalog-ID: |
DOAJ056405197 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056405197 | ||
003 | DE-627 | ||
005 | 20230308201304.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2985993 |2 doi | |
035 | |a (DE-627)DOAJ056405197 | ||
035 | |a (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Sophia Selvarajan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biodegradable Piezoelectric Transducer for Powering Transient Implants |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. | ||
650 | 4 | |a Biodegradable materials | |
650 | 4 | |a implants | |
650 | 4 | |a piezoelectric transducers | |
650 | 4 | |a wireless power transmission | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Albert Kim |e verfasserin |4 aut | |
700 | 0 | |a Seung Hyun Song |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 68219-68225 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:68219-68225 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2985993 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9057650/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 68219-68225 |
author_variant |
s s ss a k ak s h s shs |
---|---|
matchkey_str |
article:21693536:2020----::idgaalpeolcrcrndcropwrnt |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2985993 doi (DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c DE-627 ger DE-627 rakwb eng TK1-9971 Sophia Selvarajan verfasserin aut Biodegradable Piezoelectric Transducer for Powering Transient Implants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering Albert Kim verfasserin aut Seung Hyun Song verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 68219-68225 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:68219-68225 https://doi.org/10.1109/ACCESS.2020.2985993 kostenfrei https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c kostenfrei https://ieeexplore.ieee.org/document/9057650/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 68219-68225 |
spelling |
10.1109/ACCESS.2020.2985993 doi (DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c DE-627 ger DE-627 rakwb eng TK1-9971 Sophia Selvarajan verfasserin aut Biodegradable Piezoelectric Transducer for Powering Transient Implants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering Albert Kim verfasserin aut Seung Hyun Song verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 68219-68225 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:68219-68225 https://doi.org/10.1109/ACCESS.2020.2985993 kostenfrei https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c kostenfrei https://ieeexplore.ieee.org/document/9057650/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 68219-68225 |
allfields_unstemmed |
10.1109/ACCESS.2020.2985993 doi (DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c DE-627 ger DE-627 rakwb eng TK1-9971 Sophia Selvarajan verfasserin aut Biodegradable Piezoelectric Transducer for Powering Transient Implants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering Albert Kim verfasserin aut Seung Hyun Song verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 68219-68225 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:68219-68225 https://doi.org/10.1109/ACCESS.2020.2985993 kostenfrei https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c kostenfrei https://ieeexplore.ieee.org/document/9057650/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 68219-68225 |
allfieldsGer |
10.1109/ACCESS.2020.2985993 doi (DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c DE-627 ger DE-627 rakwb eng TK1-9971 Sophia Selvarajan verfasserin aut Biodegradable Piezoelectric Transducer for Powering Transient Implants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering Albert Kim verfasserin aut Seung Hyun Song verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 68219-68225 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:68219-68225 https://doi.org/10.1109/ACCESS.2020.2985993 kostenfrei https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c kostenfrei https://ieeexplore.ieee.org/document/9057650/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 68219-68225 |
allfieldsSound |
10.1109/ACCESS.2020.2985993 doi (DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c DE-627 ger DE-627 rakwb eng TK1-9971 Sophia Selvarajan verfasserin aut Biodegradable Piezoelectric Transducer for Powering Transient Implants 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering Albert Kim verfasserin aut Seung Hyun Song verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 68219-68225 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:68219-68225 https://doi.org/10.1109/ACCESS.2020.2985993 kostenfrei https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c kostenfrei https://ieeexplore.ieee.org/document/9057650/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 68219-68225 |
language |
English |
source |
In IEEE Access 8(2020), Seite 68219-68225 volume:8 year:2020 pages:68219-68225 |
sourceStr |
In IEEE Access 8(2020), Seite 68219-68225 volume:8 year:2020 pages:68219-68225 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biodegradable materials implants piezoelectric transducers wireless power transmission Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Sophia Selvarajan @@aut@@ Albert Kim @@aut@@ Seung Hyun Song @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056405197 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056405197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2985993</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056405197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sophia Selvarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biodegradable Piezoelectric Transducer for Powering Transient Implants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodegradable materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoelectric transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless power transmission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Albert Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seung Hyun Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 68219-68225</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:68219-68225</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2985993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9057650/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">68219-68225</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sophia Selvarajan |
spellingShingle |
Sophia Selvarajan misc TK1-9971 misc Biodegradable materials misc implants misc piezoelectric transducers misc wireless power transmission misc Electrical engineering. Electronics. Nuclear engineering Biodegradable Piezoelectric Transducer for Powering Transient Implants |
authorStr |
Sophia Selvarajan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Biodegradable Piezoelectric Transducer for Powering Transient Implants Biodegradable materials implants piezoelectric transducers wireless power transmission |
topic |
misc TK1-9971 misc Biodegradable materials misc implants misc piezoelectric transducers misc wireless power transmission misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Biodegradable materials misc implants misc piezoelectric transducers misc wireless power transmission misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Biodegradable materials misc implants misc piezoelectric transducers misc wireless power transmission misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Biodegradable Piezoelectric Transducer for Powering Transient Implants |
ctrlnum |
(DE-627)DOAJ056405197 (DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c |
title_full |
Biodegradable Piezoelectric Transducer for Powering Transient Implants |
author_sort |
Sophia Selvarajan |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
68219 |
author_browse |
Sophia Selvarajan Albert Kim Seung Hyun Song |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Sophia Selvarajan |
doi_str_mv |
10.1109/ACCESS.2020.2985993 |
author2-role |
verfasserin |
title_sort |
biodegradable piezoelectric transducer for powering transient implants |
callnumber |
TK1-9971 |
title_auth |
Biodegradable Piezoelectric Transducer for Powering Transient Implants |
abstract |
Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. |
abstractGer |
Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. |
abstract_unstemmed |
Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Biodegradable Piezoelectric Transducer for Powering Transient Implants |
url |
https://doi.org/10.1109/ACCESS.2020.2985993 https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c https://ieeexplore.ieee.org/document/9057650/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Albert Kim Seung Hyun Song |
author2Str |
Albert Kim Seung Hyun Song |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2985993 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:39:13.699Z |
_version_ |
1803591775633276928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056405197</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201304.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2985993</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056405197</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe340b493b47841ffb0c9536e0b3f7b0c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sophia Selvarajan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biodegradable Piezoelectric Transducer for Powering Transient Implants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup<2</sup< in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodegradable materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">piezoelectric transducers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wireless power transmission</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Albert Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Seung Hyun Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 68219-68225</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:68219-68225</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2985993</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e340b493b47841ffb0c9536e0b3f7b0c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9057650/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">68219-68225</subfield></datafield></record></collection>
|
score |
7.402323 |