The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model
A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability,...
Ausführliche Beschreibung
Autor*in: |
Wen Yin [verfasserIn] Jiarong Liang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 33998-34007 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:33998-34007 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2974482 |
---|
Katalog-ID: |
DOAJ056407742 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056407742 | ||
003 | DE-627 | ||
005 | 20230308201316.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2974482 |2 doi | |
035 | |a (DE-627)DOAJ056407742 | ||
035 | |a (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Wen Yin |e verfasserin |4 aut | |
245 | 1 | 4 | |a The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. | ||
650 | 4 | |a Multiprocessor system | |
650 | 4 | |a <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability | |
650 | 4 | |a PMC model | |
650 | 4 | |a hypercube network | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jiarong Liang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 33998-34007 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:33998-34007 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2974482 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9d94c401e08248849cda305b97b1c86b |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9000911/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 33998-34007 |
author_variant |
w y wy j l jl |
---|---|
matchkey_str |
article:21693536:2020----::hgodegbroadansbltoayecbnt |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2974482 doi (DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b DE-627 ger DE-627 rakwb eng TK1-9971 Wen Yin verfasserin aut The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering Jiarong Liang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 33998-34007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:33998-34007 https://doi.org/10.1109/ACCESS.2020.2974482 kostenfrei https://doaj.org/article/9d94c401e08248849cda305b97b1c86b kostenfrei https://ieeexplore.ieee.org/document/9000911/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 33998-34007 |
spelling |
10.1109/ACCESS.2020.2974482 doi (DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b DE-627 ger DE-627 rakwb eng TK1-9971 Wen Yin verfasserin aut The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering Jiarong Liang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 33998-34007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:33998-34007 https://doi.org/10.1109/ACCESS.2020.2974482 kostenfrei https://doaj.org/article/9d94c401e08248849cda305b97b1c86b kostenfrei https://ieeexplore.ieee.org/document/9000911/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 33998-34007 |
allfields_unstemmed |
10.1109/ACCESS.2020.2974482 doi (DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b DE-627 ger DE-627 rakwb eng TK1-9971 Wen Yin verfasserin aut The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering Jiarong Liang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 33998-34007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:33998-34007 https://doi.org/10.1109/ACCESS.2020.2974482 kostenfrei https://doaj.org/article/9d94c401e08248849cda305b97b1c86b kostenfrei https://ieeexplore.ieee.org/document/9000911/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 33998-34007 |
allfieldsGer |
10.1109/ACCESS.2020.2974482 doi (DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b DE-627 ger DE-627 rakwb eng TK1-9971 Wen Yin verfasserin aut The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering Jiarong Liang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 33998-34007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:33998-34007 https://doi.org/10.1109/ACCESS.2020.2974482 kostenfrei https://doaj.org/article/9d94c401e08248849cda305b97b1c86b kostenfrei https://ieeexplore.ieee.org/document/9000911/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 33998-34007 |
allfieldsSound |
10.1109/ACCESS.2020.2974482 doi (DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b DE-627 ger DE-627 rakwb eng TK1-9971 Wen Yin verfasserin aut The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering Jiarong Liang verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 33998-34007 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:33998-34007 https://doi.org/10.1109/ACCESS.2020.2974482 kostenfrei https://doaj.org/article/9d94c401e08248849cda305b97b1c86b kostenfrei https://ieeexplore.ieee.org/document/9000911/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 33998-34007 |
language |
English |
source |
In IEEE Access 8(2020), Seite 33998-34007 volume:8 year:2020 pages:33998-34007 |
sourceStr |
In IEEE Access 8(2020), Seite 33998-34007 volume:8 year:2020 pages:33998-34007 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Wen Yin @@aut@@ Jiarong Liang @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056407742 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056407742</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2974482</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056407742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9d94c401e08248849cda305b97b1c86b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiprocessor system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PMC model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypercube network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiarong Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 33998-34007</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:33998-34007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2974482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9d94c401e08248849cda305b97b1c86b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9000911/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">33998-34007</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Wen Yin |
spellingShingle |
Wen Yin misc TK1-9971 misc Multiprocessor system misc <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability misc PMC model misc hypercube network misc Electrical engineering. Electronics. Nuclear engineering The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
authorStr |
Wen Yin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model Multiprocessor system <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability PMC model hypercube network |
topic |
misc TK1-9971 misc Multiprocessor system misc <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability misc PMC model misc hypercube network misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Multiprocessor system misc <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability misc PMC model misc hypercube network misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Multiprocessor system misc <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability misc PMC model misc hypercube network misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
ctrlnum |
(DE-627)DOAJ056407742 (DE-599)DOAJ9d94c401e08248849cda305b97b1c86b |
title_full |
The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
author_sort |
Wen Yin |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
33998 |
author_browse |
Wen Yin Jiarong Liang |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen Yin |
doi_str_mv |
10.1109/ACCESS.2020.2974482 |
author2-role |
verfasserin |
title_sort |
g-good-neighbor local diagnosability of a hypercube network under the pmc model |
callnumber |
TK1-9971 |
title_auth |
The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
abstract |
A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. |
abstractGer |
A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. |
abstract_unstemmed |
A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model |
url |
https://doi.org/10.1109/ACCESS.2020.2974482 https://doaj.org/article/9d94c401e08248849cda305b97b1c86b https://ieeexplore.ieee.org/document/9000911/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jiarong Liang |
author2Str |
Jiarong Liang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2974482 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:40:06.566Z |
_version_ |
1803591831068344320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056407742</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2974482</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056407742</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9d94c401e08248849cda305b97b1c86b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The G-Good-Neighbor Local Diagnosability of a Hypercube Network Under the PMC Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A significant indicator used in evaluating the reliability of a multiprocessor system is fault diagnosability. Researchers concentrate on the diagnosability of the entire system while ignoring important local information about the system. In our paper, an innovative concept of fault diagnosability, called g-good-neighbor local diagnosability, is put forward to study the diagnosability of a system at a node under the g-good-neighbor condition. Moreover, we obtain the relationship between the local diagnosability of a system at each node and the whole system's diagnosability under the g-good-neighbor condition. Under the PMC model, we prove that the g-good-neighbor local diagnosability of an n-dimensional hypercube network Qn at each node is at least 2<sup<g</sup<(n - g + 1) - 1 for 0 ≤ g ≤ n - 3 and that when n - 2 ≤ g ≤ n - 1, the g-good-neighbor local diagnosability of Q<sub<n</sub< at each node is 2n<sup<-1</sup< - 1. Further, we easily derive the diagnosability of hypercube Q<sub<n</sub< under the g-good-neighbor condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiprocessor system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"<g</italic<-good-neighbor local diagnosability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PMC model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypercube network</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiarong Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 33998-34007</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:33998-34007</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2974482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9d94c401e08248849cda305b97b1c86b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9000911/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">33998-34007</subfield></datafield></record></collection>
|
score |
7.400527 |