Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system
Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photoca...
Ausführliche Beschreibung
Autor*in: |
Mingjie Li [verfasserIn] Shun Yokoyama [verfasserIn] Hideyuki Takahashi [verfasserIn] Keyou Yan [verfasserIn] Kazuyuki Tohji [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nano Select - Wiley-VCH, 2021, 2(2021), 10, Seite 1974-1985 |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2021 ; number:10 ; pages:1974-1985 |
Links: |
---|
DOI / URN: |
10.1002/nano.202000122 |
---|
Katalog-ID: |
DOAJ056449038 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056449038 | ||
003 | DE-627 | ||
005 | 20230502081700.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/nano.202000122 |2 doi | |
035 | |a (DE-627)DOAJ056449038 | ||
035 | |a (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Mingjie Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. | ||
650 | 4 | |a charge separation | |
650 | 4 | |a light harvesting | |
650 | 4 | |a NiWO4/Pt/CdS | |
650 | 4 | |a optimization | |
650 | 4 | |a Z‐scheme system | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Shun Yokoyama |e verfasserin |4 aut | |
700 | 0 | |a Hideyuki Takahashi |e verfasserin |4 aut | |
700 | 0 | |a Keyou Yan |e verfasserin |4 aut | |
700 | 0 | |a Kazuyuki Tohji |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nano Select |d Wiley-VCH, 2021 |g 2(2021), 10, Seite 1974-1985 |w (DE-627)1736479032 |w (DE-600)3042763-0 |x 26884011 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2021 |g number:10 |g pages:1974-1985 |
856 | 4 | 0 | |u https://doi.org/10.1002/nano.202000122 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1002/nano.202000122 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2688-4011 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2021 |e 10 |h 1974-1985 |
author_variant |
m l ml s y sy h t ht k y ky k t kt |
---|---|
matchkey_str |
article:26884011:2021----::rcscmoiinouainootmznnw4t |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1002/nano.202000122 doi (DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca DE-627 ger DE-627 rakwb eng TA401-492 Mingjie Li verfasserin aut Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials Shun Yokoyama verfasserin aut Hideyuki Takahashi verfasserin aut Keyou Yan verfasserin aut Kazuyuki Tohji verfasserin aut In Nano Select Wiley-VCH, 2021 2(2021), 10, Seite 1974-1985 (DE-627)1736479032 (DE-600)3042763-0 26884011 nnns volume:2 year:2021 number:10 pages:1974-1985 https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca kostenfrei https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/toc/2688-4011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 10 1974-1985 |
spelling |
10.1002/nano.202000122 doi (DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca DE-627 ger DE-627 rakwb eng TA401-492 Mingjie Li verfasserin aut Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials Shun Yokoyama verfasserin aut Hideyuki Takahashi verfasserin aut Keyou Yan verfasserin aut Kazuyuki Tohji verfasserin aut In Nano Select Wiley-VCH, 2021 2(2021), 10, Seite 1974-1985 (DE-627)1736479032 (DE-600)3042763-0 26884011 nnns volume:2 year:2021 number:10 pages:1974-1985 https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca kostenfrei https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/toc/2688-4011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 10 1974-1985 |
allfields_unstemmed |
10.1002/nano.202000122 doi (DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca DE-627 ger DE-627 rakwb eng TA401-492 Mingjie Li verfasserin aut Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials Shun Yokoyama verfasserin aut Hideyuki Takahashi verfasserin aut Keyou Yan verfasserin aut Kazuyuki Tohji verfasserin aut In Nano Select Wiley-VCH, 2021 2(2021), 10, Seite 1974-1985 (DE-627)1736479032 (DE-600)3042763-0 26884011 nnns volume:2 year:2021 number:10 pages:1974-1985 https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca kostenfrei https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/toc/2688-4011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 10 1974-1985 |
allfieldsGer |
10.1002/nano.202000122 doi (DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca DE-627 ger DE-627 rakwb eng TA401-492 Mingjie Li verfasserin aut Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials Shun Yokoyama verfasserin aut Hideyuki Takahashi verfasserin aut Keyou Yan verfasserin aut Kazuyuki Tohji verfasserin aut In Nano Select Wiley-VCH, 2021 2(2021), 10, Seite 1974-1985 (DE-627)1736479032 (DE-600)3042763-0 26884011 nnns volume:2 year:2021 number:10 pages:1974-1985 https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca kostenfrei https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/toc/2688-4011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 10 1974-1985 |
allfieldsSound |
10.1002/nano.202000122 doi (DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca DE-627 ger DE-627 rakwb eng TA401-492 Mingjie Li verfasserin aut Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials Shun Yokoyama verfasserin aut Hideyuki Takahashi verfasserin aut Keyou Yan verfasserin aut Kazuyuki Tohji verfasserin aut In Nano Select Wiley-VCH, 2021 2(2021), 10, Seite 1974-1985 (DE-627)1736479032 (DE-600)3042763-0 26884011 nnns volume:2 year:2021 number:10 pages:1974-1985 https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca kostenfrei https://doi.org/10.1002/nano.202000122 kostenfrei https://doaj.org/toc/2688-4011 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2021 10 1974-1985 |
language |
English |
source |
In Nano Select 2(2021), 10, Seite 1974-1985 volume:2 year:2021 number:10 pages:1974-1985 |
sourceStr |
In Nano Select 2(2021), 10, Seite 1974-1985 volume:2 year:2021 number:10 pages:1974-1985 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Nano Select |
authorswithroles_txt_mv |
Mingjie Li @@aut@@ Shun Yokoyama @@aut@@ Hideyuki Takahashi @@aut@@ Keyou Yan @@aut@@ Kazuyuki Tohji @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1736479032 |
id |
DOAJ056449038 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056449038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502081700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nano.202000122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056449038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charge separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiWO4/Pt/CdS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z‐scheme system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Yokoyama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hideyuki Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keyou Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuyuki Tohji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nano Select</subfield><subfield code="d">Wiley-VCH, 2021</subfield><subfield code="g">2(2021), 10, Seite 1974-1985</subfield><subfield code="w">(DE-627)1736479032</subfield><subfield code="w">(DE-600)3042763-0</subfield><subfield code="x">26884011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1974-1985</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/nano.202000122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/nano.202000122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2688-4011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="h">1974-1985</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mingjie Li |
spellingShingle |
Mingjie Li misc TA401-492 misc charge separation misc light harvesting misc NiWO4/Pt/CdS misc optimization misc Z‐scheme system misc Materials of engineering and construction. Mechanics of materials Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
authorStr |
Mingjie Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1736479032 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
26884011 |
topic_title |
TA401-492 Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system charge separation light harvesting NiWO4/Pt/CdS optimization Z‐scheme system |
topic |
misc TA401-492 misc charge separation misc light harvesting misc NiWO4/Pt/CdS misc optimization misc Z‐scheme system misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc charge separation misc light harvesting misc NiWO4/Pt/CdS misc optimization misc Z‐scheme system misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc charge separation misc light harvesting misc NiWO4/Pt/CdS misc optimization misc Z‐scheme system misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano Select |
hierarchy_parent_id |
1736479032 |
hierarchy_top_title |
Nano Select |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1736479032 (DE-600)3042763-0 |
title |
Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
ctrlnum |
(DE-627)DOAJ056449038 (DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca |
title_full |
Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
author_sort |
Mingjie Li |
journal |
Nano Select |
journalStr |
Nano Select |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1974 |
author_browse |
Mingjie Li Shun Yokoyama Hideyuki Takahashi Keyou Yan Kazuyuki Tohji |
container_volume |
2 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Mingjie Li |
doi_str_mv |
10.1002/nano.202000122 |
author2-role |
verfasserin |
title_sort |
precise composition modulation for optimizing niwo4/pt/cds z‐scheme system |
callnumber |
TA401-492 |
title_auth |
Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
abstract |
Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. |
abstractGer |
Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. |
abstract_unstemmed |
Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system |
url |
https://doi.org/10.1002/nano.202000122 https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca https://doaj.org/toc/2688-4011 |
remote_bool |
true |
author2 |
Shun Yokoyama Hideyuki Takahashi Keyou Yan Kazuyuki Tohji |
author2Str |
Shun Yokoyama Hideyuki Takahashi Keyou Yan Kazuyuki Tohji |
ppnlink |
1736479032 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1002/nano.202000122 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T20:54:57.823Z |
_version_ |
1803592765615898624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056449038</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502081700.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nano.202000122</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056449038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb4ed77b5f3274d5fafcbb89d4be062ca</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mingjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precise composition modulation for optimizing NiWO4/Pt/CdS Z‐scheme system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A reasonable structure is crucial for the solar‐to‐chemical conversion process of the integrated Z‐scheme system. Composition modulation provides a new dimension for the optimization of Z‐scheme system. Herein, a composition modulated NiWO4/Pt/CdS Z‐scheme system is demonstrated for photocatalytic hydrogen generation. Proportions of Ni, W, Cd, and S in NiWO4/Pt/CdS are precisely tuned through the ion‐exchange reaction between NiWO4 and CdS. Important features of the Z‐scheme system in terms of light harvesting, charge separation and charge transfer are optimized accordingly. Bandgap of CdS is tuned continuously from 2.22 to 1.52 eV through controlling the Cd and S contents in NiWO4/Pt/CdS. The results of photoluminescence spectrometry and photoelectrochemical analyses demonstrate that the NiS generated from ion‐exchange reaction increase the charge separation and transfer rates. Furthermore, the molar ratio of NiWO4 to CdS is regulated to a balance state, leading to the decrease of charge recombination. The optimized NiWO4/Pt/CdS Z‐scheme system delivers the comprehensive performance of excellent light harvesting and charge separation abilities, low charge recombination rate, and suitable energy band structure for water reduction. The hydrogen generation rate is increased to 14.39 mmol h‐1g‐1 after the optimization. The optimized method brings a new insight into the rational design of Z‐scheme system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charge separation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NiWO4/Pt/CdS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z‐scheme system</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Yokoyama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hideyuki Takahashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keyou Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuyuki Tohji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nano Select</subfield><subfield code="d">Wiley-VCH, 2021</subfield><subfield code="g">2(2021), 10, Seite 1974-1985</subfield><subfield code="w">(DE-627)1736479032</subfield><subfield code="w">(DE-600)3042763-0</subfield><subfield code="x">26884011</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:1974-1985</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/nano.202000122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b4ed77b5f3274d5fafcbb89d4be062ca</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1002/nano.202000122</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2688-4011</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="h">1974-1985</subfield></datafield></record></collection>
|
score |
7.4018 |