Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images
Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumi...
Ausführliche Beschreibung
Autor*in: |
Xianwei Zheng [verfasserIn] Hongjie Li [verfasserIn] Hanjiang Xiong [verfasserIn] Xiao Xie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing - IEEE, 2020, 14(2021), Seite 4737-4752 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2021 ; pages:4737-4752 |
Links: |
---|
DOI / URN: |
10.1109/JSTARS.2021.3069222 |
---|
Katalog-ID: |
DOAJ056461259 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056461259 | ||
003 | DE-627 | ||
005 | 20230308201718.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JSTARS.2021.3069222 |2 doi | |
035 | |a (DE-627)DOAJ056461259 | ||
035 | |a (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TC1501-1800 | |
050 | 0 | |a QC801-809 | |
100 | 0 | |a Xianwei Zheng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. | ||
650 | 4 | |a Aerial oblique imagery | |
650 | 4 | |a feature matching | |
650 | 4 | |a ground imagery | |
650 | 4 | |a ground-to-aerial image matching | |
650 | 4 | |a repetitive pattern | |
653 | 0 | |a Ocean engineering | |
653 | 0 | |a Geophysics. Cosmic physics | |
700 | 0 | |a Hongjie Li |e verfasserin |4 aut | |
700 | 0 | |a Hanjiang Xiong |e verfasserin |4 aut | |
700 | 0 | |a Xiao Xie |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |d IEEE, 2020 |g 14(2021), Seite 4737-4752 |w (DE-627)581732634 |w (DE-600)2457423-5 |x 21511535 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2021 |g pages:4737-4752 |
856 | 4 | 0 | |u https://doi.org/10.1109/JSTARS.2021.3069222 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9387538/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2151-1535 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2965 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2021 |h 4737-4752 |
author_variant |
x z xz h l hl h x hx x x xx |
---|---|
matchkey_str |
article:21511535:2021----::atcpituulyuddrudoeiletrmthn |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TC |
publishDate |
2021 |
allfields |
10.1109/JSTARS.2021.3069222 doi (DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 DE-627 ger DE-627 rakwb eng TC1501-1800 QC801-809 Xianwei Zheng verfasserin aut Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics Hongjie Li verfasserin aut Hanjiang Xiong verfasserin aut Xiao Xie verfasserin aut In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE, 2020 14(2021), Seite 4737-4752 (DE-627)581732634 (DE-600)2457423-5 21511535 nnns volume:14 year:2021 pages:4737-4752 https://doi.org/10.1109/JSTARS.2021.3069222 kostenfrei https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 kostenfrei https://ieeexplore.ieee.org/document/9387538/ kostenfrei https://doaj.org/toc/2151-1535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 4737-4752 |
spelling |
10.1109/JSTARS.2021.3069222 doi (DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 DE-627 ger DE-627 rakwb eng TC1501-1800 QC801-809 Xianwei Zheng verfasserin aut Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics Hongjie Li verfasserin aut Hanjiang Xiong verfasserin aut Xiao Xie verfasserin aut In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE, 2020 14(2021), Seite 4737-4752 (DE-627)581732634 (DE-600)2457423-5 21511535 nnns volume:14 year:2021 pages:4737-4752 https://doi.org/10.1109/JSTARS.2021.3069222 kostenfrei https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 kostenfrei https://ieeexplore.ieee.org/document/9387538/ kostenfrei https://doaj.org/toc/2151-1535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 4737-4752 |
allfields_unstemmed |
10.1109/JSTARS.2021.3069222 doi (DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 DE-627 ger DE-627 rakwb eng TC1501-1800 QC801-809 Xianwei Zheng verfasserin aut Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics Hongjie Li verfasserin aut Hanjiang Xiong verfasserin aut Xiao Xie verfasserin aut In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE, 2020 14(2021), Seite 4737-4752 (DE-627)581732634 (DE-600)2457423-5 21511535 nnns volume:14 year:2021 pages:4737-4752 https://doi.org/10.1109/JSTARS.2021.3069222 kostenfrei https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 kostenfrei https://ieeexplore.ieee.org/document/9387538/ kostenfrei https://doaj.org/toc/2151-1535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 4737-4752 |
allfieldsGer |
10.1109/JSTARS.2021.3069222 doi (DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 DE-627 ger DE-627 rakwb eng TC1501-1800 QC801-809 Xianwei Zheng verfasserin aut Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics Hongjie Li verfasserin aut Hanjiang Xiong verfasserin aut Xiao Xie verfasserin aut In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE, 2020 14(2021), Seite 4737-4752 (DE-627)581732634 (DE-600)2457423-5 21511535 nnns volume:14 year:2021 pages:4737-4752 https://doi.org/10.1109/JSTARS.2021.3069222 kostenfrei https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 kostenfrei https://ieeexplore.ieee.org/document/9387538/ kostenfrei https://doaj.org/toc/2151-1535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 4737-4752 |
allfieldsSound |
10.1109/JSTARS.2021.3069222 doi (DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 DE-627 ger DE-627 rakwb eng TC1501-1800 QC801-809 Xianwei Zheng verfasserin aut Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics Hongjie Li verfasserin aut Hanjiang Xiong verfasserin aut Xiao Xie verfasserin aut In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE, 2020 14(2021), Seite 4737-4752 (DE-627)581732634 (DE-600)2457423-5 21511535 nnns volume:14 year:2021 pages:4737-4752 https://doi.org/10.1109/JSTARS.2021.3069222 kostenfrei https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 kostenfrei https://ieeexplore.ieee.org/document/9387538/ kostenfrei https://doaj.org/toc/2151-1535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2021 4737-4752 |
language |
English |
source |
In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14(2021), Seite 4737-4752 volume:14 year:2021 pages:4737-4752 |
sourceStr |
In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14(2021), Seite 4737-4752 volume:14 year:2021 pages:4737-4752 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern Ocean engineering Geophysics. Cosmic physics |
isfreeaccess_bool |
true |
container_title |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
authorswithroles_txt_mv |
Xianwei Zheng @@aut@@ Hongjie Li @@aut@@ Hanjiang Xiong @@aut@@ Xiao Xie @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
581732634 |
id |
DOAJ056461259 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056461259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTARS.2021.3069222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056461259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ57836b6831b6414ba53f976b3b567b73</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1501-1800</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xianwei Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerial oblique imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground-to-aerial image matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">repetitive pattern</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ocean engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanjiang Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">14(2021), Seite 4737-4752</subfield><subfield code="w">(DE-627)581732634</subfield><subfield code="w">(DE-600)2457423-5</subfield><subfield code="x">21511535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:4737-4752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JSTARS.2021.3069222</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/57836b6831b6414ba53f976b3b567b73</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9387538/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2151-1535</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2965</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="h">4737-4752</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xianwei Zheng |
spellingShingle |
Xianwei Zheng misc TC1501-1800 misc QC801-809 misc Aerial oblique imagery misc feature matching misc ground imagery misc ground-to-aerial image matching misc repetitive pattern misc Ocean engineering misc Geophysics. Cosmic physics Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
authorStr |
Xianwei Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)581732634 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TC1501-1800 |
illustrated |
Not Illustrated |
issn |
21511535 |
topic_title |
TC1501-1800 QC801-809 Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images Aerial oblique imagery feature matching ground imagery ground-to-aerial image matching repetitive pattern |
topic |
misc TC1501-1800 misc QC801-809 misc Aerial oblique imagery misc feature matching misc ground imagery misc ground-to-aerial image matching misc repetitive pattern misc Ocean engineering misc Geophysics. Cosmic physics |
topic_unstemmed |
misc TC1501-1800 misc QC801-809 misc Aerial oblique imagery misc feature matching misc ground imagery misc ground-to-aerial image matching misc repetitive pattern misc Ocean engineering misc Geophysics. Cosmic physics |
topic_browse |
misc TC1501-1800 misc QC801-809 misc Aerial oblique imagery misc feature matching misc ground imagery misc ground-to-aerial image matching misc repetitive pattern misc Ocean engineering misc Geophysics. Cosmic physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
hierarchy_parent_id |
581732634 |
hierarchy_top_title |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)581732634 (DE-600)2457423-5 |
title |
Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
ctrlnum |
(DE-627)DOAJ056461259 (DE-599)DOAJ57836b6831b6414ba53f976b3b567b73 |
title_full |
Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
author_sort |
Xianwei Zheng |
journal |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
journalStr |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
4737 |
author_browse |
Xianwei Zheng Hongjie Li Hanjiang Xiong Xiao Xie |
container_volume |
14 |
class |
TC1501-1800 QC801-809 |
format_se |
Elektronische Aufsätze |
author-letter |
Xianwei Zheng |
doi_str_mv |
10.1109/JSTARS.2021.3069222 |
author2-role |
verfasserin |
title_sort |
lattice-point mutually guided ground-to-aerial feature matching for urban scene images |
callnumber |
TC1501-1800 |
title_auth |
Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
abstract |
Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. |
abstractGer |
Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. |
abstract_unstemmed |
Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2129 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2472 GBV_ILN_2522 GBV_ILN_2965 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images |
url |
https://doi.org/10.1109/JSTARS.2021.3069222 https://doaj.org/article/57836b6831b6414ba53f976b3b567b73 https://ieeexplore.ieee.org/document/9387538/ https://doaj.org/toc/2151-1535 |
remote_bool |
true |
author2 |
Hongjie Li Hanjiang Xiong Xiao Xie |
author2Str |
Hongjie Li Hanjiang Xiong Xiao Xie |
ppnlink |
581732634 |
callnumber-subject |
TC - Hydraulic and Ocean Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JSTARS.2021.3069222 |
callnumber-a |
TC1501-1800 |
up_date |
2024-07-03T20:59:23.664Z |
_version_ |
1803593044380876800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056461259</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308201718.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTARS.2021.3069222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056461259</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ57836b6831b6414ba53f976b3b567b73</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TC1501-1800</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xianwei Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice-Point Mutually Guided Ground-to-Aerial Feature Matching for Urban Scene Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ground-to-aerial feature matching bridges information from cross-view images, which enables optimized urban applications, e.g., pixel-level geolocating and complete urban 3-D reconstruction. However, urban ground and aerial images typically suffer from drastic changes in viewpoint, scale, and illumination, together with repetitive patterns. Thus, direct matching of local features between ground and aerial images is particularly difficult because of the low similarity of local descriptors and high ambiguity in true–false match discrimination. For this challenging task, we propose a novel lattice-point mutually guided matching (LPMG) method in this article. We specifically address two key issues: 1) reducing descriptor variance and 2) enhancing true–false match discriminability. The former is solved by recovering the geometry and appearance of the underlying image region in 3-D through automatic view rectification on ground and aerial images. The latter is circumvented by replacing the conventional mismatch removal with an LPMG strategy. In this strategy, the topology structure of repeated façade elements (i.e., lattice), and the high reliable point matching seeds, are first extracted from the rectified ground and aerial images. Then, the point matching seeds guide the self-similar lattice tiles from two views to be precisely aligned, thereby estimating an accurate transformation model from lattice tile correspondences. Finally, the estimated model powerfully supervises the differentiation of true and false matches from the entire putative match set. Extensive experiments conducted on several datasets show that our method can obtain a considerable number of nearly pure correct matches from urban ground and aerial images, significantly outperforming those existing methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerial oblique imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground imagery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground-to-aerial image matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">repetitive pattern</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ocean engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongjie Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hanjiang Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</subfield><subfield code="d">IEEE, 2020</subfield><subfield code="g">14(2021), Seite 4737-4752</subfield><subfield code="w">(DE-627)581732634</subfield><subfield code="w">(DE-600)2457423-5</subfield><subfield code="x">21511535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:4737-4752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JSTARS.2021.3069222</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/57836b6831b6414ba53f976b3b567b73</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9387538/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2151-1535</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2965</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2021</subfield><subfield code="h">4737-4752</subfield></datafield></record></collection>
|
score |
7.4009285 |