A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud
The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the...
Ausführliche Beschreibung
Autor*in: |
Jianmin Li [verfasserIn] Ying Zhong [verfasserIn] Xin Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 86145-86156 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:86145-86156 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2925429 |
---|
Katalog-ID: |
DOAJ056532474 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056532474 | ||
003 | DE-627 | ||
005 | 20230308202246.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2925429 |2 doi | |
035 | |a (DE-627)DOAJ056532474 | ||
035 | |a (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Jianmin Li |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. | ||
650 | 4 | |a Moldable parallel task | |
650 | 4 | |a speedup | |
650 | 4 | |a parallelism | |
650 | 4 | |a scheduling method | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Ying Zhong |e verfasserin |4 aut | |
700 | 0 | |a Xin Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 86145-86156 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:86145-86156 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2925429 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8746995/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 86145-86156 |
author_variant |
j l jl y z yz x z xz |
---|---|
matchkey_str |
article:21693536:2019----::shdlnmtoomlalprletssosdrnsedpn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2925429 doi (DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f DE-627 ger DE-627 rakwb eng TK1-9971 Jianmin Li verfasserin aut A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering Ying Zhong verfasserin aut Xin Zhang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 86145-86156 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:86145-86156 https://doi.org/10.1109/ACCESS.2019.2925429 kostenfrei https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f kostenfrei https://ieeexplore.ieee.org/document/8746995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 86145-86156 |
spelling |
10.1109/ACCESS.2019.2925429 doi (DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f DE-627 ger DE-627 rakwb eng TK1-9971 Jianmin Li verfasserin aut A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering Ying Zhong verfasserin aut Xin Zhang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 86145-86156 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:86145-86156 https://doi.org/10.1109/ACCESS.2019.2925429 kostenfrei https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f kostenfrei https://ieeexplore.ieee.org/document/8746995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 86145-86156 |
allfields_unstemmed |
10.1109/ACCESS.2019.2925429 doi (DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f DE-627 ger DE-627 rakwb eng TK1-9971 Jianmin Li verfasserin aut A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering Ying Zhong verfasserin aut Xin Zhang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 86145-86156 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:86145-86156 https://doi.org/10.1109/ACCESS.2019.2925429 kostenfrei https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f kostenfrei https://ieeexplore.ieee.org/document/8746995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 86145-86156 |
allfieldsGer |
10.1109/ACCESS.2019.2925429 doi (DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f DE-627 ger DE-627 rakwb eng TK1-9971 Jianmin Li verfasserin aut A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering Ying Zhong verfasserin aut Xin Zhang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 86145-86156 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:86145-86156 https://doi.org/10.1109/ACCESS.2019.2925429 kostenfrei https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f kostenfrei https://ieeexplore.ieee.org/document/8746995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 86145-86156 |
allfieldsSound |
10.1109/ACCESS.2019.2925429 doi (DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f DE-627 ger DE-627 rakwb eng TK1-9971 Jianmin Li verfasserin aut A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering Ying Zhong verfasserin aut Xin Zhang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 86145-86156 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:86145-86156 https://doi.org/10.1109/ACCESS.2019.2925429 kostenfrei https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f kostenfrei https://ieeexplore.ieee.org/document/8746995/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 86145-86156 |
language |
English |
source |
In IEEE Access 7(2019), Seite 86145-86156 volume:7 year:2019 pages:86145-86156 |
sourceStr |
In IEEE Access 7(2019), Seite 86145-86156 volume:7 year:2019 pages:86145-86156 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Moldable parallel task speedup parallelism scheduling method Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Jianmin Li @@aut@@ Ying Zhong @@aut@@ Xin Zhang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056532474 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056532474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308202246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2925429</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056532474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianmin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moldable parallel task</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speedup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallelism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scheduling method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 86145-86156</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:86145-86156</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2925429</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8746995/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">86145-86156</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jianmin Li |
spellingShingle |
Jianmin Li misc TK1-9971 misc Moldable parallel task misc speedup misc parallelism misc scheduling method misc Electrical engineering. Electronics. Nuclear engineering A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
authorStr |
Jianmin Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud Moldable parallel task speedup parallelism scheduling method |
topic |
misc TK1-9971 misc Moldable parallel task misc speedup misc parallelism misc scheduling method misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Moldable parallel task misc speedup misc parallelism misc scheduling method misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Moldable parallel task misc speedup misc parallelism misc scheduling method misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
ctrlnum |
(DE-627)DOAJ056532474 (DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f |
title_full |
A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
author_sort |
Jianmin Li |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
86145 |
author_browse |
Jianmin Li Ying Zhong Xin Zhang |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Jianmin Li |
doi_str_mv |
10.1109/ACCESS.2019.2925429 |
author2-role |
verfasserin |
title_sort |
scheduling method of moldable parallel tasks considering speedup and system load on the cloud |
callnumber |
TK1-9971 |
title_auth |
A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
abstract |
The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. |
abstractGer |
The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. |
abstract_unstemmed |
The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud |
url |
https://doi.org/10.1109/ACCESS.2019.2925429 https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f https://ieeexplore.ieee.org/document/8746995/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Ying Zhong Xin Zhang |
author2Str |
Ying Zhong Xin Zhang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2925429 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T21:24:20.522Z |
_version_ |
1803594613941862400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056532474</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308202246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2925429</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056532474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f278123a5854d559d493d60a3ac7f2f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jianmin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Scheduling Method of Moldable Parallel Tasks Considering Speedup and System Load on the Cloud</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The moldable parallel task (MPT) is a kind of parallel task that their sub-tasks hold the resources exclusively, which has been widely used in different areas. Our paper focuses on the scheduling of moldable tasks when every sub-task supports time-slice. The time-slice is a consecutive time that the sub-task holds the resources exclusively. After every time-slice, the sub-task can be canceled, suspended, or continued. We give the model of MPTs and propose a scheduling method for MPTs: MC (a heuristic scheduling method supporting time-slice model on the cloud). The simulation results show that, even under a forecast accuracy of system load under 90% and 95%, MC reduces average waiting time and average execution time; at the same time, MC has a lower value in the percentages of unfinished tasks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moldable parallel task</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">speedup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallelism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scheduling method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ying Zhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 86145-86156</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:86145-86156</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2925429</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f278123a5854d559d493d60a3ac7f2f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8746995/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">86145-86156</subfield></datafield></record></collection>
|
score |
7.401185 |