An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem
In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swa...
Ausführliche Beschreibung
Autor*in: |
Diaa Salama Abdul-Minaam [verfasserIn] Wadha Mohammed Edkheel Saqar Al-Mutairi [verfasserIn] Mohamed A. Awad [verfasserIn] Walaa H. El-Ashmawi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 97959-97974 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:97959-97974 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2985752 |
---|
Katalog-ID: |
DOAJ056654960 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056654960 | ||
003 | DE-627 | ||
005 | 20230308203145.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2985752 |2 doi | |
035 | |a (DE-627)DOAJ056654960 | ||
035 | |a (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Diaa Salama Abdul-Minaam |e verfasserin |4 aut | |
245 | 1 | 3 | |a An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. | ||
650 | 4 | |a Bin packing | |
650 | 4 | |a first fit heuristic | |
650 | 4 | |a fitness-dependent optimizer | |
650 | 4 | |a swarm intelligent algorithms | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Wadha Mohammed Edkheel Saqar Al-Mutairi |e verfasserin |4 aut | |
700 | 0 | |a Mohamed A. Awad |e verfasserin |4 aut | |
700 | 0 | |a Walaa H. El-Ashmawi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 97959-97974 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:97959-97974 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2985752 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9057531/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 97959-97974 |
author_variant |
d s a m dsam w m e s a m wmesam m a a maa w h e a whea |
---|---|
matchkey_str |
article:21693536:2020----::ndpieinsdpnetpiiefrhoeiesoa |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2985752 doi (DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 DE-627 ger DE-627 rakwb eng TK1-9971 Diaa Salama Abdul-Minaam verfasserin aut An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering Wadha Mohammed Edkheel Saqar Al-Mutairi verfasserin aut Mohamed A. Awad verfasserin aut Walaa H. El-Ashmawi verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 97959-97974 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:97959-97974 https://doi.org/10.1109/ACCESS.2020.2985752 kostenfrei https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 kostenfrei https://ieeexplore.ieee.org/document/9057531/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 97959-97974 |
spelling |
10.1109/ACCESS.2020.2985752 doi (DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 DE-627 ger DE-627 rakwb eng TK1-9971 Diaa Salama Abdul-Minaam verfasserin aut An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering Wadha Mohammed Edkheel Saqar Al-Mutairi verfasserin aut Mohamed A. Awad verfasserin aut Walaa H. El-Ashmawi verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 97959-97974 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:97959-97974 https://doi.org/10.1109/ACCESS.2020.2985752 kostenfrei https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 kostenfrei https://ieeexplore.ieee.org/document/9057531/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 97959-97974 |
allfields_unstemmed |
10.1109/ACCESS.2020.2985752 doi (DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 DE-627 ger DE-627 rakwb eng TK1-9971 Diaa Salama Abdul-Minaam verfasserin aut An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering Wadha Mohammed Edkheel Saqar Al-Mutairi verfasserin aut Mohamed A. Awad verfasserin aut Walaa H. El-Ashmawi verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 97959-97974 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:97959-97974 https://doi.org/10.1109/ACCESS.2020.2985752 kostenfrei https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 kostenfrei https://ieeexplore.ieee.org/document/9057531/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 97959-97974 |
allfieldsGer |
10.1109/ACCESS.2020.2985752 doi (DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 DE-627 ger DE-627 rakwb eng TK1-9971 Diaa Salama Abdul-Minaam verfasserin aut An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering Wadha Mohammed Edkheel Saqar Al-Mutairi verfasserin aut Mohamed A. Awad verfasserin aut Walaa H. El-Ashmawi verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 97959-97974 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:97959-97974 https://doi.org/10.1109/ACCESS.2020.2985752 kostenfrei https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 kostenfrei https://ieeexplore.ieee.org/document/9057531/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 97959-97974 |
allfieldsSound |
10.1109/ACCESS.2020.2985752 doi (DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 DE-627 ger DE-627 rakwb eng TK1-9971 Diaa Salama Abdul-Minaam verfasserin aut An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering Wadha Mohammed Edkheel Saqar Al-Mutairi verfasserin aut Mohamed A. Awad verfasserin aut Walaa H. El-Ashmawi verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 97959-97974 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:97959-97974 https://doi.org/10.1109/ACCESS.2020.2985752 kostenfrei https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 kostenfrei https://ieeexplore.ieee.org/document/9057531/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 97959-97974 |
language |
English |
source |
In IEEE Access 8(2020), Seite 97959-97974 volume:8 year:2020 pages:97959-97974 |
sourceStr |
In IEEE Access 8(2020), Seite 97959-97974 volume:8 year:2020 pages:97959-97974 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Diaa Salama Abdul-Minaam @@aut@@ Wadha Mohammed Edkheel Saqar Al-Mutairi @@aut@@ Mohamed A. Awad @@aut@@ Walaa H. El-Ashmawi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ056654960 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056654960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308203145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2985752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056654960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Diaa Salama Abdul-Minaam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first fit heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fitness-dependent optimizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swarm intelligent algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wadha Mohammed Edkheel Saqar Al-Mutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed A. Awad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Walaa H. El-Ashmawi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 97959-97974</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:97959-97974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2985752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9057531/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">97959-97974</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Diaa Salama Abdul-Minaam |
spellingShingle |
Diaa Salama Abdul-Minaam misc TK1-9971 misc Bin packing misc first fit heuristic misc fitness-dependent optimizer misc swarm intelligent algorithms misc Electrical engineering. Electronics. Nuclear engineering An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
authorStr |
Diaa Salama Abdul-Minaam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem Bin packing first fit heuristic fitness-dependent optimizer swarm intelligent algorithms |
topic |
misc TK1-9971 misc Bin packing misc first fit heuristic misc fitness-dependent optimizer misc swarm intelligent algorithms misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Bin packing misc first fit heuristic misc fitness-dependent optimizer misc swarm intelligent algorithms misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Bin packing misc first fit heuristic misc fitness-dependent optimizer misc swarm intelligent algorithms misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
ctrlnum |
(DE-627)DOAJ056654960 (DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785 |
title_full |
An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
author_sort |
Diaa Salama Abdul-Minaam |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
97959 |
author_browse |
Diaa Salama Abdul-Minaam Wadha Mohammed Edkheel Saqar Al-Mutairi Mohamed A. Awad Walaa H. El-Ashmawi |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Diaa Salama Abdul-Minaam |
doi_str_mv |
10.1109/ACCESS.2020.2985752 |
author2-role |
verfasserin |
title_sort |
adaptive fitness-dependent optimizer for the one-dimensional bin packing problem |
callnumber |
TK1-9971 |
title_auth |
An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
abstract |
In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. |
abstractGer |
In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. |
abstract_unstemmed |
In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem |
url |
https://doi.org/10.1109/ACCESS.2020.2985752 https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785 https://ieeexplore.ieee.org/document/9057531/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Wadha Mohammed Edkheel Saqar Al-Mutairi Mohamed A. Awad Walaa H. El-Ashmawi |
author2Str |
Wadha Mohammed Edkheel Saqar Al-Mutairi Mohamed A. Awad Walaa H. El-Ashmawi |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2985752 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T22:08:01.819Z |
_version_ |
1803597362568888320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056654960</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308203145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2985752</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056654960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f30a1e519754050b6acb7ed98b42785</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Diaa Salama Abdul-Minaam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An Adaptive Fitness-Dependent Optimizer for the One-Dimensional Bin Packing Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, the one-dimensional bin packing problem (1D-BPP) has become one of the most famous combinatorial optimization problems. The 1D-BPP is a robust NP-hard problem that can be solved through optimization algorithms. This paper proposes an adaptive procedure using a recently optimized swarm algorithm and fitness-dependent optimizer (FDO), named the AFDO, to solve the BPP. The proposed algorithm is based on the generation of a feasible initial population through a modified well-known first fit (FF) heuristic approach. To obtain a final optimized solution, the most critical parameters of the algorithm are adapted for the problem. To the best of our knowledge, this is the first study to apply the FDO algorithm in a discrete optimization problem, especially for solving the BPP. The adaptive algorithm was tested on 30 instances obtained from benchmark datasets. The performance and evaluation results of this algorithm were compared with those of other popular algorithms, such as the particle swarm optimization (PSO) algorithm, crow search algorithm (CSA), and Jaya algorithm. The AFDO algorithm obtained the smallest fitness values and outperformed the PSO, CS, and Jaya algorithms by 16%, 17%, and 11%, respectively. Moreover, the AFDO shows superiority in terms of execution time with improvements over the execution times of the PSO, CS, and Jaya algorithms by up to 46%, 54%, and 43%, respectively. The experimental results illustrate the effectiveness of the proposed adaptive algorithm for solving the 1D-BPP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bin packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first fit heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fitness-dependent optimizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">swarm intelligent algorithms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wadha Mohammed Edkheel Saqar Al-Mutairi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed A. Awad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Walaa H. El-Ashmawi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 97959-97974</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:97959-97974</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2985752</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f30a1e519754050b6acb7ed98b42785</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9057531/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">97959-97974</subfield></datafield></record></collection>
|
score |
7.4007463 |