The suppression of hydrodynamic noise from underwater sonar domes by flow control
Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. Ho...
Ausführliche Beschreibung
Autor*in: |
Pei Jie [verfasserIn] Niu Chen [verfasserIn] Qu Junchao [verfasserIn] Liu Yongwei [verfasserIn] Shang Dejiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2019 |
---|
Übergeordnetes Werk: |
In: MATEC Web of Conferences - EDP Sciences, 2013, 283, p 08008(2019) |
---|---|
Übergeordnetes Werk: |
volume:283, p 08008 ; year:2019 |
Links: |
---|
DOI / URN: |
10.1051/matecconf/201928308008 |
---|
Katalog-ID: |
DOAJ056759657 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056759657 | ||
003 | DE-627 | ||
005 | 20230308203833.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/matecconf/201928308008 |2 doi | |
035 | |a (DE-627)DOAJ056759657 | ||
035 | |a (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Pei Jie |e verfasserin |4 aut | |
245 | 1 | 4 | |a The suppression of hydrodynamic noise from underwater sonar domes by flow control |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. | ||
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Niu Chen |e verfasserin |4 aut | |
700 | 0 | |a Qu Junchao |e verfasserin |4 aut | |
700 | 0 | |a Liu Yongwei |e verfasserin |4 aut | |
700 | 0 | |a Shang Dejiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t MATEC Web of Conferences |d EDP Sciences, 2013 |g 283, p 08008(2019) |w (DE-627)720166209 |w (DE-600)2673602-0 |x 2261236X |7 nnns |
773 | 1 | 8 | |g volume:283, p 08008 |g year:2019 |
856 | 4 | 0 | |u https://doi.org/10.1051/matecconf/201928308008 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 |z kostenfrei |
856 | 4 | 0 | |u https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2261-236X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 283, p 08008 |j 2019 |
author_variant |
p j pj n c nc q j qj l y ly s d sd |
---|---|
matchkey_str |
article:2261236X:2019----::hsprsinfyrdnmcosfoudraesn |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TA |
publishDate |
2019 |
allfields |
10.1051/matecconf/201928308008 doi (DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 DE-627 ger DE-627 rakwb eng fre TA1-2040 Pei Jie verfasserin aut The suppression of hydrodynamic noise from underwater sonar domes by flow control 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. Engineering (General). Civil engineering (General) Niu Chen verfasserin aut Qu Junchao verfasserin aut Liu Yongwei verfasserin aut Shang Dejiang verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 283, p 08008(2019) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:283, p 08008 year:2019 https://doi.org/10.1051/matecconf/201928308008 kostenfrei https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 283, p 08008 2019 |
spelling |
10.1051/matecconf/201928308008 doi (DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 DE-627 ger DE-627 rakwb eng fre TA1-2040 Pei Jie verfasserin aut The suppression of hydrodynamic noise from underwater sonar domes by flow control 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. Engineering (General). Civil engineering (General) Niu Chen verfasserin aut Qu Junchao verfasserin aut Liu Yongwei verfasserin aut Shang Dejiang verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 283, p 08008(2019) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:283, p 08008 year:2019 https://doi.org/10.1051/matecconf/201928308008 kostenfrei https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 283, p 08008 2019 |
allfields_unstemmed |
10.1051/matecconf/201928308008 doi (DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 DE-627 ger DE-627 rakwb eng fre TA1-2040 Pei Jie verfasserin aut The suppression of hydrodynamic noise from underwater sonar domes by flow control 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. Engineering (General). Civil engineering (General) Niu Chen verfasserin aut Qu Junchao verfasserin aut Liu Yongwei verfasserin aut Shang Dejiang verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 283, p 08008(2019) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:283, p 08008 year:2019 https://doi.org/10.1051/matecconf/201928308008 kostenfrei https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 283, p 08008 2019 |
allfieldsGer |
10.1051/matecconf/201928308008 doi (DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 DE-627 ger DE-627 rakwb eng fre TA1-2040 Pei Jie verfasserin aut The suppression of hydrodynamic noise from underwater sonar domes by flow control 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. Engineering (General). Civil engineering (General) Niu Chen verfasserin aut Qu Junchao verfasserin aut Liu Yongwei verfasserin aut Shang Dejiang verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 283, p 08008(2019) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:283, p 08008 year:2019 https://doi.org/10.1051/matecconf/201928308008 kostenfrei https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 283, p 08008 2019 |
allfieldsSound |
10.1051/matecconf/201928308008 doi (DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 DE-627 ger DE-627 rakwb eng fre TA1-2040 Pei Jie verfasserin aut The suppression of hydrodynamic noise from underwater sonar domes by flow control 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. Engineering (General). Civil engineering (General) Niu Chen verfasserin aut Qu Junchao verfasserin aut Liu Yongwei verfasserin aut Shang Dejiang verfasserin aut In MATEC Web of Conferences EDP Sciences, 2013 283, p 08008(2019) (DE-627)720166209 (DE-600)2673602-0 2261236X nnns volume:283, p 08008 year:2019 https://doi.org/10.1051/matecconf/201928308008 kostenfrei https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 kostenfrei https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf kostenfrei https://doaj.org/toc/2261-236X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 283, p 08008 2019 |
language |
English French |
source |
In MATEC Web of Conferences 283, p 08008(2019) volume:283, p 08008 year:2019 |
sourceStr |
In MATEC Web of Conferences 283, p 08008(2019) volume:283, p 08008 year:2019 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
MATEC Web of Conferences |
authorswithroles_txt_mv |
Pei Jie @@aut@@ Niu Chen @@aut@@ Qu Junchao @@aut@@ Liu Yongwei @@aut@@ Shang Dejiang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
720166209 |
id |
DOAJ056759657 |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056759657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308203833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/matecconf/201928308008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056759657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ36a4f912a16947d68dc77b57f539df11</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pei Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The suppression of hydrodynamic noise from underwater sonar domes by flow control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Niu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qu Junchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Yongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shang Dejiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MATEC Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">283, p 08008(2019)</subfield><subfield code="w">(DE-627)720166209</subfield><subfield code="w">(DE-600)2673602-0</subfield><subfield code="x">2261236X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:283, p 08008</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/matecconf/201928308008</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/36a4f912a16947d68dc77b57f539df11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2261-236X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">283, p 08008</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pei Jie |
spellingShingle |
Pei Jie misc TA1-2040 misc Engineering (General). Civil engineering (General) The suppression of hydrodynamic noise from underwater sonar domes by flow control |
authorStr |
Pei Jie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720166209 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
2261236X |
topic_title |
TA1-2040 The suppression of hydrodynamic noise from underwater sonar domes by flow control |
topic |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
MATEC Web of Conferences |
hierarchy_parent_id |
720166209 |
hierarchy_top_title |
MATEC Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720166209 (DE-600)2673602-0 |
title |
The suppression of hydrodynamic noise from underwater sonar domes by flow control |
ctrlnum |
(DE-627)DOAJ056759657 (DE-599)DOAJ36a4f912a16947d68dc77b57f539df11 |
title_full |
The suppression of hydrodynamic noise from underwater sonar domes by flow control |
author_sort |
Pei Jie |
journal |
MATEC Web of Conferences |
journalStr |
MATEC Web of Conferences |
callnumber-first-code |
T |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Pei Jie Niu Chen Qu Junchao Liu Yongwei Shang Dejiang |
container_volume |
283, p 08008 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Pei Jie |
doi_str_mv |
10.1051/matecconf/201928308008 |
author2-role |
verfasserin |
title_sort |
suppression of hydrodynamic noise from underwater sonar domes by flow control |
callnumber |
TA1-2040 |
title_auth |
The suppression of hydrodynamic noise from underwater sonar domes by flow control |
abstract |
Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. |
abstractGer |
Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. |
abstract_unstemmed |
Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The suppression of hydrodynamic noise from underwater sonar domes by flow control |
url |
https://doi.org/10.1051/matecconf/201928308008 https://doaj.org/article/36a4f912a16947d68dc77b57f539df11 https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf https://doaj.org/toc/2261-236X |
remote_bool |
true |
author2 |
Niu Chen Qu Junchao Liu Yongwei Shang Dejiang |
author2Str |
Niu Chen Qu Junchao Liu Yongwei Shang Dejiang |
ppnlink |
720166209 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/matecconf/201928308008 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:41:49.072Z |
_version_ |
1803599488300875776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056759657</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308203833.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/matecconf/201928308008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056759657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ36a4f912a16947d68dc77b57f539df11</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pei Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The suppression of hydrodynamic noise from underwater sonar domes by flow control</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrodynamic noise is one of the three major noise sources of underwater vehicles. The sonar dome is a device placed in front of the ship and the submarine to absorb the flow fluctuation and to reduce the hydrodynamic noise, so that the sonar inside the dome is not affected by the external fluid. However, with the increase of the velocity of ships and submarines, cavitation can usually form in the bulge of the sonar domes, which will bring high level of noise to the sonar. The internal self-noise of the sonar dome mainly comes from two areas: the leading-edge stagnation point and the transition zone of boundary layer. In the paper, we designed the leading-edge serrations and dimples in the leading-edge and transition areas of the sonar dome respectively to reduce the movement resistance and prevent the separation of the boundary layer. The research on leading-edge serrations and dimple technology is carried out by using theoretical analysis, numerical calculations. The results show that the leading-edge serrations and dimples can add energy from the outer flow into the boundary layer; the cavitation phenomenon can be delayed. The hydrodynamic noise has been suppressed by about 20dB.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Niu Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qu Junchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liu Yongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shang Dejiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">MATEC Web of Conferences</subfield><subfield code="d">EDP Sciences, 2013</subfield><subfield code="g">283, p 08008(2019)</subfield><subfield code="w">(DE-627)720166209</subfield><subfield code="w">(DE-600)2673602-0</subfield><subfield code="x">2261236X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:283, p 08008</subfield><subfield code="g">year:2019</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/matecconf/201928308008</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/36a4f912a16947d68dc77b57f539df11</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.matec-conferences.org/articles/matecconf/pdf/2019/32/matecconf_fcac2019_08008.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2261-236X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">283, p 08008</subfield><subfield code="j">2019</subfield></datafield></record></collection>
|
score |
7.4028063 |