Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach
Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively pro...
Ausführliche Beschreibung
Autor*in: |
Léon-Charles Tranchevent [verfasserIn] Petr V. Nazarov [verfasserIn] Tony Kaoma [verfasserIn] Georges P. Schmartz [verfasserIn] Arnaud Muller [verfasserIn] Sang-Yoon Kim [verfasserIn] Jagath C. Rajapakse [verfasserIn] Francisco Azuaje [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biology Direct - BMC, 2006, 13(2018), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2018 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s13062-018-0214-9 |
---|
Katalog-ID: |
DOAJ05678354X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05678354X | ||
003 | DE-627 | ||
005 | 20230308204003.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13062-018-0214-9 |2 doi | |
035 | |a (DE-627)DOAJ05678354X | ||
035 | |a (DE-599)DOAJ5962939811b747528878e15e1eee982b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Léon-Charles Tranchevent |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. | ||
650 | 4 | |a Biological networks | |
650 | 4 | |a Network-based methods | |
650 | 4 | |a Network topology | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Petr V. Nazarov |e verfasserin |4 aut | |
700 | 0 | |a Tony Kaoma |e verfasserin |4 aut | |
700 | 0 | |a Georges P. Schmartz |e verfasserin |4 aut | |
700 | 0 | |a Arnaud Muller |e verfasserin |4 aut | |
700 | 0 | |a Sang-Yoon Kim |e verfasserin |4 aut | |
700 | 0 | |a Jagath C. Rajapakse |e verfasserin |4 aut | |
700 | 0 | |a Francisco Azuaje |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biology Direct |d BMC, 2006 |g 13(2018), 1, Seite 13 |w (DE-627)507522516 |w (DE-600)2221028-3 |x 17456150 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2018 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s13062-018-0214-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5962939811b747528878e15e1eee982b |z kostenfrei |
856 | 4 | 0 | |u http://link.springer.com/article/10.1186/s13062-018-0214-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1745-6150 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2018 |e 1 |h 13 |
author_variant |
l c t lct p v n pvn t k tk g p s gps a m am s y k syk j c r jcr f a fa |
---|---|
matchkey_str |
article:17456150:2018----::rdciglnclucmonuolsoaainssnaitga |
hierarchy_sort_str |
2018 |
callnumber-subject-code |
QH |
publishDate |
2018 |
allfields |
10.1186/s13062-018-0214-9 doi (DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b DE-627 ger DE-627 rakwb eng QH301-705.5 Léon-Charles Tranchevent verfasserin aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks Network-based methods Network topology Biology (General) Petr V. Nazarov verfasserin aut Tony Kaoma verfasserin aut Georges P. Schmartz verfasserin aut Arnaud Muller verfasserin aut Sang-Yoon Kim verfasserin aut Jagath C. Rajapakse verfasserin aut Francisco Azuaje verfasserin aut In Biology Direct BMC, 2006 13(2018), 1, Seite 13 (DE-627)507522516 (DE-600)2221028-3 17456150 nnns volume:13 year:2018 number:1 pages:13 https://doi.org/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/article/5962939811b747528878e15e1eee982b kostenfrei http://link.springer.com/article/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/toc/1745-6150 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 13 |
spelling |
10.1186/s13062-018-0214-9 doi (DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b DE-627 ger DE-627 rakwb eng QH301-705.5 Léon-Charles Tranchevent verfasserin aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks Network-based methods Network topology Biology (General) Petr V. Nazarov verfasserin aut Tony Kaoma verfasserin aut Georges P. Schmartz verfasserin aut Arnaud Muller verfasserin aut Sang-Yoon Kim verfasserin aut Jagath C. Rajapakse verfasserin aut Francisco Azuaje verfasserin aut In Biology Direct BMC, 2006 13(2018), 1, Seite 13 (DE-627)507522516 (DE-600)2221028-3 17456150 nnns volume:13 year:2018 number:1 pages:13 https://doi.org/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/article/5962939811b747528878e15e1eee982b kostenfrei http://link.springer.com/article/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/toc/1745-6150 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 13 |
allfields_unstemmed |
10.1186/s13062-018-0214-9 doi (DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b DE-627 ger DE-627 rakwb eng QH301-705.5 Léon-Charles Tranchevent verfasserin aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks Network-based methods Network topology Biology (General) Petr V. Nazarov verfasserin aut Tony Kaoma verfasserin aut Georges P. Schmartz verfasserin aut Arnaud Muller verfasserin aut Sang-Yoon Kim verfasserin aut Jagath C. Rajapakse verfasserin aut Francisco Azuaje verfasserin aut In Biology Direct BMC, 2006 13(2018), 1, Seite 13 (DE-627)507522516 (DE-600)2221028-3 17456150 nnns volume:13 year:2018 number:1 pages:13 https://doi.org/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/article/5962939811b747528878e15e1eee982b kostenfrei http://link.springer.com/article/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/toc/1745-6150 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 13 |
allfieldsGer |
10.1186/s13062-018-0214-9 doi (DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b DE-627 ger DE-627 rakwb eng QH301-705.5 Léon-Charles Tranchevent verfasserin aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks Network-based methods Network topology Biology (General) Petr V. Nazarov verfasserin aut Tony Kaoma verfasserin aut Georges P. Schmartz verfasserin aut Arnaud Muller verfasserin aut Sang-Yoon Kim verfasserin aut Jagath C. Rajapakse verfasserin aut Francisco Azuaje verfasserin aut In Biology Direct BMC, 2006 13(2018), 1, Seite 13 (DE-627)507522516 (DE-600)2221028-3 17456150 nnns volume:13 year:2018 number:1 pages:13 https://doi.org/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/article/5962939811b747528878e15e1eee982b kostenfrei http://link.springer.com/article/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/toc/1745-6150 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 13 |
allfieldsSound |
10.1186/s13062-018-0214-9 doi (DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b DE-627 ger DE-627 rakwb eng QH301-705.5 Léon-Charles Tranchevent verfasserin aut Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. Biological networks Network-based methods Network topology Biology (General) Petr V. Nazarov verfasserin aut Tony Kaoma verfasserin aut Georges P. Schmartz verfasserin aut Arnaud Muller verfasserin aut Sang-Yoon Kim verfasserin aut Jagath C. Rajapakse verfasserin aut Francisco Azuaje verfasserin aut In Biology Direct BMC, 2006 13(2018), 1, Seite 13 (DE-627)507522516 (DE-600)2221028-3 17456150 nnns volume:13 year:2018 number:1 pages:13 https://doi.org/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/article/5962939811b747528878e15e1eee982b kostenfrei http://link.springer.com/article/10.1186/s13062-018-0214-9 kostenfrei https://doaj.org/toc/1745-6150 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2018 1 13 |
language |
English |
source |
In Biology Direct 13(2018), 1, Seite 13 volume:13 year:2018 number:1 pages:13 |
sourceStr |
In Biology Direct 13(2018), 1, Seite 13 volume:13 year:2018 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biological networks Network-based methods Network topology Biology (General) |
isfreeaccess_bool |
true |
container_title |
Biology Direct |
authorswithroles_txt_mv |
Léon-Charles Tranchevent @@aut@@ Petr V. Nazarov @@aut@@ Tony Kaoma @@aut@@ Georges P. Schmartz @@aut@@ Arnaud Muller @@aut@@ Sang-Yoon Kim @@aut@@ Jagath C. Rajapakse @@aut@@ Francisco Azuaje @@aut@@ |
publishDateDaySort_date |
2018-01-01T00:00:00Z |
hierarchy_top_id |
507522516 |
id |
DOAJ05678354X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05678354X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308204003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13062-018-0214-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05678354X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5962939811b747528878e15e1eee982b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Léon-Charles Tranchevent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network-based methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petr V. Nazarov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tony Kaoma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georges P. Schmartz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arnaud Muller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Yoon Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jagath C. Rajapakse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Azuaje</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology Direct</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">13(2018), 1, Seite 13</subfield><subfield code="w">(DE-627)507522516</subfield><subfield code="w">(DE-600)2221028-3</subfield><subfield code="x">17456150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5962939811b747528878e15e1eee982b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-6150</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Léon-Charles Tranchevent |
spellingShingle |
Léon-Charles Tranchevent misc QH301-705.5 misc Biological networks misc Network-based methods misc Network topology misc Biology (General) Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
authorStr |
Léon-Charles Tranchevent |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)507522516 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
17456150 |
topic_title |
QH301-705.5 Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach Biological networks Network-based methods Network topology |
topic |
misc QH301-705.5 misc Biological networks misc Network-based methods misc Network topology misc Biology (General) |
topic_unstemmed |
misc QH301-705.5 misc Biological networks misc Network-based methods misc Network topology misc Biology (General) |
topic_browse |
misc QH301-705.5 misc Biological networks misc Network-based methods misc Network topology misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biology Direct |
hierarchy_parent_id |
507522516 |
hierarchy_top_title |
Biology Direct |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)507522516 (DE-600)2221028-3 |
title |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
ctrlnum |
(DE-627)DOAJ05678354X (DE-599)DOAJ5962939811b747528878e15e1eee982b |
title_full |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
author_sort |
Léon-Charles Tranchevent |
journal |
Biology Direct |
journalStr |
Biology Direct |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Léon-Charles Tranchevent Petr V. Nazarov Tony Kaoma Georges P. Schmartz Arnaud Muller Sang-Yoon Kim Jagath C. Rajapakse Francisco Azuaje |
container_volume |
13 |
class |
QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Léon-Charles Tranchevent |
doi_str_mv |
10.1186/s13062-018-0214-9 |
author2-role |
verfasserin |
title_sort |
predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
callnumber |
QH301-705.5 |
title_auth |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
abstract |
Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. |
abstractGer |
Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. |
abstract_unstemmed |
Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach |
url |
https://doi.org/10.1186/s13062-018-0214-9 https://doaj.org/article/5962939811b747528878e15e1eee982b http://link.springer.com/article/10.1186/s13062-018-0214-9 https://doaj.org/toc/1745-6150 |
remote_bool |
true |
author2 |
Petr V. Nazarov Tony Kaoma Georges P. Schmartz Arnaud Muller Sang-Yoon Kim Jagath C. Rajapakse Francisco Azuaje |
author2Str |
Petr V. Nazarov Tony Kaoma Georges P. Schmartz Arnaud Muller Sang-Yoon Kim Jagath C. Rajapakse Francisco Azuaje |
ppnlink |
507522516 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13062-018-0214-9 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T22:49:30.270Z |
_version_ |
1803599971899932672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05678354X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308204003.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13062-018-0214-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05678354X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5962939811b747528878e15e1eee982b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Léon-Charles Tranchevent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background One of the main current challenges in computational biology is to make sense of the huge amounts of multidimensional experimental data that are being produced. For instance, large cohorts of patients are often screened using different high-throughput technologies, effectively producing multiple patient-specific molecular profiles for hundreds or thousands of patients. Results We propose and implement a network-based method that integrates such patient omics data into Patient Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset, consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various topological features and observe, for instance, that redundant centrality metrics can be combined to build more powerful models. Conclusion We demonstrate that the networks inferred from omics data contain clinically relevant information and that patient clinical outcomes can be predicted using only network topological data. Reviewers This article was reviewed by Yang-Yu Liu, Tomislav Smuc and Isabel Nepomuceno.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network-based methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network topology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petr V. Nazarov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tony Kaoma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Georges P. Schmartz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arnaud Muller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sang-Yoon Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jagath C. Rajapakse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francisco Azuaje</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biology Direct</subfield><subfield code="d">BMC, 2006</subfield><subfield code="g">13(2018), 1, Seite 13</subfield><subfield code="w">(DE-627)507522516</subfield><subfield code="w">(DE-600)2221028-3</subfield><subfield code="x">17456150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5962939811b747528878e15e1eee982b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://link.springer.com/article/10.1186/s13062-018-0214-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1745-6150</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.401846 |