Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses
Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy...
Ausführliche Beschreibung
Autor*in: |
Ashley Cimino-Mathews [verfasserIn] Erika J Lampert [verfasserIn] Joo Sang Lee [verfasserIn] Jayakumar Nair [verfasserIn] Daniel An [verfasserIn] Eytan Ruppin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
In: Journal for ImmunoTherapy of Cancer - BMJ Publishing Group, 2013, 8(2020), 2 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; number:2 |
Links: |
---|
DOI / URN: |
10.1136/jitc-2019-000516 |
---|
Katalog-ID: |
DOAJ056980469 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ056980469 | ||
003 | DE-627 | ||
005 | 20230502135405.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1136/jitc-2019-000516 |2 doi | |
035 | |a (DE-627)DOAJ056980469 | ||
035 | |a (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Ashley Cimino-Mathews |e verfasserin |4 aut | |
245 | 1 | 0 | |a Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. | ||
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Erika J Lampert |e verfasserin |4 aut | |
700 | 0 | |a Joo Sang Lee |e verfasserin |4 aut | |
700 | 0 | |a Jayakumar Nair |e verfasserin |4 aut | |
700 | 0 | |a Daniel An |e verfasserin |4 aut | |
700 | 0 | |a Eytan Ruppin |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal for ImmunoTherapy of Cancer |d BMJ Publishing Group, 2013 |g 8(2020), 2 |w (DE-627)750086335 |w (DE-600)2719863-7 |x 20511426 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g number:2 |
856 | 4 | 0 | |u https://doi.org/10.1136/jitc-2019-000516 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 |z kostenfrei |
856 | 4 | 0 | |u https://jitc.bmj.com/content/8/2/e000516.full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2051-1426 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |e 2 |
author_variant |
a c m acm e j l ejl j s l jsl j n jn d a da e r er |
---|---|
matchkey_str |
article:20511426:2020----::lnclucmsfrxsrimnteayneurnbcwltphggaeeosvracneivl |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
RC |
publishDate |
2020 |
allfields |
10.1136/jitc-2019-000516 doi (DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 DE-627 ger DE-627 rakwb eng RC254-282 Ashley Cimino-Mathews verfasserin aut Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Erika J Lampert verfasserin aut Joo Sang Lee verfasserin aut Jayakumar Nair verfasserin aut Daniel An verfasserin aut Eytan Ruppin verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 8(2020), 2 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:8 year:2020 number:2 https://doi.org/10.1136/jitc-2019-000516 kostenfrei https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 kostenfrei https://jitc.bmj.com/content/8/2/e000516.full kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 |
spelling |
10.1136/jitc-2019-000516 doi (DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 DE-627 ger DE-627 rakwb eng RC254-282 Ashley Cimino-Mathews verfasserin aut Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Erika J Lampert verfasserin aut Joo Sang Lee verfasserin aut Jayakumar Nair verfasserin aut Daniel An verfasserin aut Eytan Ruppin verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 8(2020), 2 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:8 year:2020 number:2 https://doi.org/10.1136/jitc-2019-000516 kostenfrei https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 kostenfrei https://jitc.bmj.com/content/8/2/e000516.full kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 |
allfields_unstemmed |
10.1136/jitc-2019-000516 doi (DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 DE-627 ger DE-627 rakwb eng RC254-282 Ashley Cimino-Mathews verfasserin aut Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Erika J Lampert verfasserin aut Joo Sang Lee verfasserin aut Jayakumar Nair verfasserin aut Daniel An verfasserin aut Eytan Ruppin verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 8(2020), 2 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:8 year:2020 number:2 https://doi.org/10.1136/jitc-2019-000516 kostenfrei https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 kostenfrei https://jitc.bmj.com/content/8/2/e000516.full kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 |
allfieldsGer |
10.1136/jitc-2019-000516 doi (DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 DE-627 ger DE-627 rakwb eng RC254-282 Ashley Cimino-Mathews verfasserin aut Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Erika J Lampert verfasserin aut Joo Sang Lee verfasserin aut Jayakumar Nair verfasserin aut Daniel An verfasserin aut Eytan Ruppin verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 8(2020), 2 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:8 year:2020 number:2 https://doi.org/10.1136/jitc-2019-000516 kostenfrei https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 kostenfrei https://jitc.bmj.com/content/8/2/e000516.full kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 |
allfieldsSound |
10.1136/jitc-2019-000516 doi (DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 DE-627 ger DE-627 rakwb eng RC254-282 Ashley Cimino-Mathews verfasserin aut Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. Neoplasms. Tumors. Oncology. Including cancer and carcinogens Erika J Lampert verfasserin aut Joo Sang Lee verfasserin aut Jayakumar Nair verfasserin aut Daniel An verfasserin aut Eytan Ruppin verfasserin aut In Journal for ImmunoTherapy of Cancer BMJ Publishing Group, 2013 8(2020), 2 (DE-627)750086335 (DE-600)2719863-7 20511426 nnns volume:8 year:2020 number:2 https://doi.org/10.1136/jitc-2019-000516 kostenfrei https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 kostenfrei https://jitc.bmj.com/content/8/2/e000516.full kostenfrei https://doaj.org/toc/2051-1426 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 2 |
language |
English |
source |
In Journal for ImmunoTherapy of Cancer 8(2020), 2 volume:8 year:2020 number:2 |
sourceStr |
In Journal for ImmunoTherapy of Cancer 8(2020), 2 volume:8 year:2020 number:2 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Journal for ImmunoTherapy of Cancer |
authorswithroles_txt_mv |
Ashley Cimino-Mathews @@aut@@ Erika J Lampert @@aut@@ Joo Sang Lee @@aut@@ Jayakumar Nair @@aut@@ Daniel An @@aut@@ Eytan Ruppin @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
750086335 |
id |
DOAJ056980469 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056980469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135405.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1136/jitc-2019-000516</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056980469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashley Cimino-Mathews</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months &gt;30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erika J Lampert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joo Sang Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jayakumar Nair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eytan Ruppin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal for ImmunoTherapy of Cancer</subfield><subfield code="d">BMJ Publishing Group, 2013</subfield><subfield code="g">8(2020), 2</subfield><subfield code="w">(DE-627)750086335</subfield><subfield code="w">(DE-600)2719863-7</subfield><subfield code="x">20511426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1136/jitc-2019-000516</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jitc.bmj.com/content/8/2/e000516.full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-1426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Ashley Cimino-Mathews |
spellingShingle |
Ashley Cimino-Mathews misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
authorStr |
Ashley Cimino-Mathews |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)750086335 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
20511426 |
topic_title |
RC254-282 Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
topic |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal for ImmunoTherapy of Cancer |
hierarchy_parent_id |
750086335 |
hierarchy_top_title |
Journal for ImmunoTherapy of Cancer |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)750086335 (DE-600)2719863-7 |
title |
Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
ctrlnum |
(DE-627)DOAJ056980469 (DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4 |
title_full |
Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
author_sort |
Ashley Cimino-Mathews |
journal |
Journal for ImmunoTherapy of Cancer |
journalStr |
Journal for ImmunoTherapy of Cancer |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Ashley Cimino-Mathews Erika J Lampert Joo Sang Lee Jayakumar Nair Daniel An Eytan Ruppin |
container_volume |
8 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Ashley Cimino-Mathews |
doi_str_mv |
10.1136/jitc-2019-000516 |
author2-role |
verfasserin |
title_sort |
clinical outcomes of prexasertib monotherapy in recurrent brca wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
callnumber |
RC254-282 |
title_auth |
Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
abstract |
Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. |
abstractGer |
Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. |
abstract_unstemmed |
Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months >30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses |
url |
https://doi.org/10.1136/jitc-2019-000516 https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4 https://jitc.bmj.com/content/8/2/e000516.full https://doaj.org/toc/2051-1426 |
remote_bool |
true |
author2 |
Erika J Lampert Joo Sang Lee Jayakumar Nair Daniel An Eytan Ruppin |
author2Str |
Erika J Lampert Joo Sang Lee Jayakumar Nair Daniel An Eytan Ruppin |
ppnlink |
750086335 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1136/jitc-2019-000516 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T23:48:43.007Z |
_version_ |
1803603697220976640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ056980469</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502135405.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1136/jitc-2019-000516</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ056980469</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ37dcb1c5de0549a2b2645b4389d375f4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashley Cimino-Mathews</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clinical outcomes of prexasertib monotherapy in recurrent BRCA wild-type high-grade serous ovarian cancer involve innate and adaptive immune responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Preclinical data suggest cell cycle checkpoint blockade may induce an immunostimulatory tumor microenvironment. However, it remains elusive whether immunomodulation occurs in the clinical setting. To test this, we used blood and fresh tissue samples collected at baseline and post therapy from a phase II trial of the cell cycle checkpoint 1 inhibitor (CHK1i) prexasertib in recurrent ovarian cancer.Methods Paired blood samples and fresh core biopsies, taken before treatment was started at baseline (cycle 1 day 1 (C1D1)) and post second dose on day 15 of cycle 1 (C1D15), were collected. To evaluate changes in the immune responses after treatment, multiparametric flow cytometry for DNA damage markers and immune cell subsets was performed on paired blood samples. RNA sequencing (RNAseq) of paired core biopsies was also analyzed. Archival tissue immune microenvironment was evaluated with immunohistochemistry. All correlative study statistical analyses used two-sided significance with a cut-off of p=0.05.Results Flow cytometric analysis showed significantly increased γ-H2AX staining after CHK1i treatment, accompanied by increased monocyte populations, suggestive of an activated innate immune response (median 31.6% vs 45.6%, p=0.005). Increased expressions of immunocompetence marker HLA-DR (Human Leukocyte Antigen DR antigen) on monocytes and of TBK1, a marker of STING (stimulator of interferon genes) pathway activation, in biopsies were associated with improved progression-free survival (PFS) (9.25 vs 3.5 months, p=0.019; 9 vs 3 months, p=0.003, respectively). Computational analysis of RNAseq data indicated increased infiltration of tumor niches by naïve B-cells and resting memory T-cells, suggestive of a possibly activated adaptive immune response, and greater T-reg infiltration after treatment correlated with worse PFS (9.25 vs 3.5 months, p=0.007). An immunosuppressive adaptive immune response, perhaps compensatory, was also observed on flow cytometry, including lymphodepletion of total peripheral CD4+ and CD8+T cells after CHK1i and an increase in the proportion of T-regs among these T-cells. Additionally, there was a trend of improved PFS with greater tumor-infiltrating lymphocytes (TILs) in archival tissues (13.7 months &gt;30% TILs vs 5.5 months ≤30% TILs, p=0.05).Conclusion Our study demonstrates that a favorable clinical response in high-grade serous ovarian carcinoma patients treated with CHK1i is possibly associated with enhanced innate and adaptive immunity, requiring further mechanistic studies. It is supportive of current efforts for a clinical development strategy for therapeutic combinations with immunotherapy in ovarian cancer.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Erika J Lampert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Joo Sang Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jayakumar Nair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel An</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eytan Ruppin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal for ImmunoTherapy of Cancer</subfield><subfield code="d">BMJ Publishing Group, 2013</subfield><subfield code="g">8(2020), 2</subfield><subfield code="w">(DE-627)750086335</subfield><subfield code="w">(DE-600)2719863-7</subfield><subfield code="x">20511426</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1136/jitc-2019-000516</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/37dcb1c5de0549a2b2645b4389d375f4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jitc.bmj.com/content/8/2/e000516.full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2051-1426</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield></datafield></record></collection>
|
score |
7.401248 |