Periodic solution of fractal Phi-4 equation
This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a u...
Ausführliche Beschreibung
Autor*in: |
Liu Caixia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Thermal Science - VINCA Institute of Nuclear Sciences, 2006, 25(2021), 2 Part B, Seite 1345-1350 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2021 ; number:2 Part B ; pages:1345-1350 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2298/TSCI200502032L |
---|
Katalog-ID: |
DOAJ057079668 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057079668 | ||
003 | DE-627 | ||
005 | 20230308205732.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2298/TSCI200502032L |2 doi | |
035 | |a (DE-627)DOAJ057079668 | ||
035 | |a (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Liu Caixia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Periodic solution of fractal Phi-4 equation |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. | ||
650 | 4 | |a fractal calculus | |
650 | 4 | |a periodic solution | |
650 | 4 | |a solitary wave | |
650 | 4 | |a duffing oscillator | |
650 | 4 | |a two-scale mathematics | |
653 | 0 | |a Mechanical engineering and machinery | |
773 | 0 | 8 | |i In |t Thermal Science |d VINCA Institute of Nuclear Sciences, 2006 |g 25(2021), 2 Part B, Seite 1345-1350 |w (DE-627)514240016 |w (DE-600)2241319-4 |x 23347163 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2021 |g number:2 Part B |g pages:1345-1350 |
856 | 4 | 0 | |u https://doi.org/10.2298/TSCI200502032L |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 |z kostenfrei |
856 | 4 | 0 | |u http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0354-9836 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2334-7163 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2021 |e 2 Part B |h 1345-1350 |
author_variant |
l c lc |
---|---|
matchkey_str |
article:23347163:2021----::eidcouinfrcap |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TJ |
publishDate |
2021 |
allfields |
10.2298/TSCI200502032L doi (DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Caixia verfasserin aut Periodic solution of fractal Phi-4 equation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 2 Part B, Seite 1345-1350 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:2 Part B pages:1345-1350 https://doi.org/10.2298/TSCI200502032L kostenfrei https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 2 Part B 1345-1350 |
spelling |
10.2298/TSCI200502032L doi (DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Caixia verfasserin aut Periodic solution of fractal Phi-4 equation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 2 Part B, Seite 1345-1350 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:2 Part B pages:1345-1350 https://doi.org/10.2298/TSCI200502032L kostenfrei https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 2 Part B 1345-1350 |
allfields_unstemmed |
10.2298/TSCI200502032L doi (DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Caixia verfasserin aut Periodic solution of fractal Phi-4 equation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 2 Part B, Seite 1345-1350 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:2 Part B pages:1345-1350 https://doi.org/10.2298/TSCI200502032L kostenfrei https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 2 Part B 1345-1350 |
allfieldsGer |
10.2298/TSCI200502032L doi (DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Caixia verfasserin aut Periodic solution of fractal Phi-4 equation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 2 Part B, Seite 1345-1350 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:2 Part B pages:1345-1350 https://doi.org/10.2298/TSCI200502032L kostenfrei https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 2 Part B 1345-1350 |
allfieldsSound |
10.2298/TSCI200502032L doi (DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 DE-627 ger DE-627 rakwb eng TJ1-1570 Liu Caixia verfasserin aut Periodic solution of fractal Phi-4 equation 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery In Thermal Science VINCA Institute of Nuclear Sciences, 2006 25(2021), 2 Part B, Seite 1345-1350 (DE-627)514240016 (DE-600)2241319-4 23347163 nnns volume:25 year:2021 number:2 Part B pages:1345-1350 https://doi.org/10.2298/TSCI200502032L kostenfrei https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 kostenfrei http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf kostenfrei https://doaj.org/toc/0354-9836 Journal toc kostenfrei https://doaj.org/toc/2334-7163 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2021 2 Part B 1345-1350 |
language |
English |
source |
In Thermal Science 25(2021), 2 Part B, Seite 1345-1350 volume:25 year:2021 number:2 Part B pages:1345-1350 |
sourceStr |
In Thermal Science 25(2021), 2 Part B, Seite 1345-1350 volume:25 year:2021 number:2 Part B pages:1345-1350 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Thermal Science |
authorswithroles_txt_mv |
Liu Caixia @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
514240016 |
id |
DOAJ057079668 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057079668</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308205732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TSCI200502032L</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057079668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liu Caixia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Periodic solution of fractal Phi-4 equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">periodic solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solitary wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duffing oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-scale mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Thermal Science</subfield><subfield code="d">VINCA Institute of Nuclear Sciences, 2006</subfield><subfield code="g">25(2021), 2 Part B, Seite 1345-1350</subfield><subfield code="w">(DE-627)514240016</subfield><subfield code="w">(DE-600)2241319-4</subfield><subfield code="x">23347163</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2 Part B</subfield><subfield code="g">pages:1345-1350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TSCI200502032L</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0354-9836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2334-7163</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">2 Part B</subfield><subfield code="h">1345-1350</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Liu Caixia |
spellingShingle |
Liu Caixia misc TJ1-1570 misc fractal calculus misc periodic solution misc solitary wave misc duffing oscillator misc two-scale mathematics misc Mechanical engineering and machinery Periodic solution of fractal Phi-4 equation |
authorStr |
Liu Caixia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)514240016 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
23347163 |
topic_title |
TJ1-1570 Periodic solution of fractal Phi-4 equation fractal calculus periodic solution solitary wave duffing oscillator two-scale mathematics |
topic |
misc TJ1-1570 misc fractal calculus misc periodic solution misc solitary wave misc duffing oscillator misc two-scale mathematics misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc fractal calculus misc periodic solution misc solitary wave misc duffing oscillator misc two-scale mathematics misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc fractal calculus misc periodic solution misc solitary wave misc duffing oscillator misc two-scale mathematics misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Thermal Science |
hierarchy_parent_id |
514240016 |
hierarchy_top_title |
Thermal Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)514240016 (DE-600)2241319-4 |
title |
Periodic solution of fractal Phi-4 equation |
ctrlnum |
(DE-627)DOAJ057079668 (DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824 |
title_full |
Periodic solution of fractal Phi-4 equation |
author_sort |
Liu Caixia |
journal |
Thermal Science |
journalStr |
Thermal Science |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1345 |
author_browse |
Liu Caixia |
container_volume |
25 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu Caixia |
doi_str_mv |
10.2298/TSCI200502032L |
title_sort |
periodic solution of fractal phi-4 equation |
callnumber |
TJ1-1570 |
title_auth |
Periodic solution of fractal Phi-4 equation |
abstract |
This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. |
abstractGer |
This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. |
abstract_unstemmed |
This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 Part B |
title_short |
Periodic solution of fractal Phi-4 equation |
url |
https://doi.org/10.2298/TSCI200502032L https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824 http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf https://doaj.org/toc/0354-9836 https://doaj.org/toc/2334-7163 |
remote_bool |
true |
ppnlink |
514240016 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2298/TSCI200502032L |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-04T00:14:06.397Z |
_version_ |
1803605294605926400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057079668</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308205732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2298/TSCI200502032L</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057079668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ055881a8da2a4138bc2bad6f507ec824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Liu Caixia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Periodic solution of fractal Phi-4 equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper focuses on a fractal Phi-4 equation with time-space fractal derivatives, though its solitary solutions have been deeply studied, its periodic solution was rarely revealed due to its strong non-linearity. Now the condition is completely changed, He’s frequency formulation provides with a universal tool to having a deep insight into the periodic property of the fractal Phi-4 equation. The two-scale transform is used to convert approximately the fractal Phi-4 equation a differential model, and a criterion is suggested for the existence of a periodic solution of the equation, the effect of fractal orders on the periodic property is also elucidated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractal calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">periodic solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solitary wave</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duffing oscillator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-scale mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Thermal Science</subfield><subfield code="d">VINCA Institute of Nuclear Sciences, 2006</subfield><subfield code="g">25(2021), 2 Part B, Seite 1345-1350</subfield><subfield code="w">(DE-627)514240016</subfield><subfield code="w">(DE-600)2241319-4</subfield><subfield code="x">23347163</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2 Part B</subfield><subfield code="g">pages:1345-1350</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2298/TSCI200502032L</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/055881a8da2a4138bc2bad6f507ec824</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.doiserbia.nb.rs/img/doi/0354-9836/2021/0354-98362100032L.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0354-9836</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2334-7163</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2021</subfield><subfield code="e">2 Part B</subfield><subfield code="h">1345-1350</subfield></datafield></record></collection>
|
score |
7.4009905 |