Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections
Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attenti...
Ausführliche Beschreibung
Autor*in: |
Sookyoung Lee [verfasserIn] Mohamed Younis [verfasserIn] Aiswarya Murali [verfasserIn] Meejeong Lee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 28137-28157 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:28137-28157 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2900360 |
---|
Katalog-ID: |
DOAJ057663785 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057663785 | ||
003 | DE-627 | ||
005 | 20230308215056.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2900360 |2 doi | |
035 | |a (DE-627)DOAJ057663785 | ||
035 | |a (DE-599)DOAJ2ee98abd96564b578814ba23d844210f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Sookyoung Lee |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. | ||
650 | 4 | |a Adaptive traffic light control | |
650 | 4 | |a k-commodity flow problem | |
650 | 4 | |a traffic flow maximization | |
650 | 4 | |a dynamic traffic management | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Mohamed Younis |e verfasserin |4 aut | |
700 | 0 | |a Aiswarya Murali |e verfasserin |4 aut | |
700 | 0 | |a Meejeong Lee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 28137-28157 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:28137-28157 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2900360 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2ee98abd96564b578814ba23d844210f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8648386/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 28137-28157 |
author_variant |
s l sl m y my a m am m l ml |
---|---|
matchkey_str |
article:21693536:2019----::yailcleiuafootmztouigelierficniina |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2900360 doi (DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f DE-627 ger DE-627 rakwb eng TK1-9971 Sookyoung Lee verfasserin aut Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering Mohamed Younis verfasserin aut Aiswarya Murali verfasserin aut Meejeong Lee verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 28137-28157 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:28137-28157 https://doi.org/10.1109/ACCESS.2019.2900360 kostenfrei https://doaj.org/article/2ee98abd96564b578814ba23d844210f kostenfrei https://ieeexplore.ieee.org/document/8648386/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 28137-28157 |
spelling |
10.1109/ACCESS.2019.2900360 doi (DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f DE-627 ger DE-627 rakwb eng TK1-9971 Sookyoung Lee verfasserin aut Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering Mohamed Younis verfasserin aut Aiswarya Murali verfasserin aut Meejeong Lee verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 28137-28157 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:28137-28157 https://doi.org/10.1109/ACCESS.2019.2900360 kostenfrei https://doaj.org/article/2ee98abd96564b578814ba23d844210f kostenfrei https://ieeexplore.ieee.org/document/8648386/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 28137-28157 |
allfields_unstemmed |
10.1109/ACCESS.2019.2900360 doi (DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f DE-627 ger DE-627 rakwb eng TK1-9971 Sookyoung Lee verfasserin aut Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering Mohamed Younis verfasserin aut Aiswarya Murali verfasserin aut Meejeong Lee verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 28137-28157 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:28137-28157 https://doi.org/10.1109/ACCESS.2019.2900360 kostenfrei https://doaj.org/article/2ee98abd96564b578814ba23d844210f kostenfrei https://ieeexplore.ieee.org/document/8648386/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 28137-28157 |
allfieldsGer |
10.1109/ACCESS.2019.2900360 doi (DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f DE-627 ger DE-627 rakwb eng TK1-9971 Sookyoung Lee verfasserin aut Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering Mohamed Younis verfasserin aut Aiswarya Murali verfasserin aut Meejeong Lee verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 28137-28157 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:28137-28157 https://doi.org/10.1109/ACCESS.2019.2900360 kostenfrei https://doaj.org/article/2ee98abd96564b578814ba23d844210f kostenfrei https://ieeexplore.ieee.org/document/8648386/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 28137-28157 |
allfieldsSound |
10.1109/ACCESS.2019.2900360 doi (DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f DE-627 ger DE-627 rakwb eng TK1-9971 Sookyoung Lee verfasserin aut Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering Mohamed Younis verfasserin aut Aiswarya Murali verfasserin aut Meejeong Lee verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 28137-28157 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:28137-28157 https://doi.org/10.1109/ACCESS.2019.2900360 kostenfrei https://doaj.org/article/2ee98abd96564b578814ba23d844210f kostenfrei https://ieeexplore.ieee.org/document/8648386/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 28137-28157 |
language |
English |
source |
In IEEE Access 7(2019), Seite 28137-28157 volume:7 year:2019 pages:28137-28157 |
sourceStr |
In IEEE Access 7(2019), Seite 28137-28157 volume:7 year:2019 pages:28137-28157 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Sookyoung Lee @@aut@@ Mohamed Younis @@aut@@ Aiswarya Murali @@aut@@ Meejeong Lee @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ057663785 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057663785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308215056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2900360</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057663785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2ee98abd96564b578814ba23d844210f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sookyoung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive traffic light control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">k-commodity flow problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic flow maximization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic traffic management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Younis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aiswarya Murali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meejeong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 28137-28157</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:28137-28157</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2900360</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2ee98abd96564b578814ba23d844210f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8648386/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">28137-28157</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Sookyoung Lee |
spellingShingle |
Sookyoung Lee misc TK1-9971 misc Adaptive traffic light control misc k-commodity flow problem misc traffic flow maximization misc dynamic traffic management misc Electrical engineering. Electronics. Nuclear engineering Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
authorStr |
Sookyoung Lee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections Adaptive traffic light control k-commodity flow problem traffic flow maximization dynamic traffic management |
topic |
misc TK1-9971 misc Adaptive traffic light control misc k-commodity flow problem misc traffic flow maximization misc dynamic traffic management misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Adaptive traffic light control misc k-commodity flow problem misc traffic flow maximization misc dynamic traffic management misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Adaptive traffic light control misc k-commodity flow problem misc traffic flow maximization misc dynamic traffic management misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
ctrlnum |
(DE-627)DOAJ057663785 (DE-599)DOAJ2ee98abd96564b578814ba23d844210f |
title_full |
Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
author_sort |
Sookyoung Lee |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
28137 |
author_browse |
Sookyoung Lee Mohamed Younis Aiswarya Murali Meejeong Lee |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Sookyoung Lee |
doi_str_mv |
10.1109/ACCESS.2019.2900360 |
author2-role |
verfasserin |
title_sort |
dynamic local vehicular flow optimization using real-time traffic conditions at multiple road intersections |
callnumber |
TK1-9971 |
title_auth |
Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
abstract |
Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. |
abstractGer |
Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. |
abstract_unstemmed |
Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections |
url |
https://doi.org/10.1109/ACCESS.2019.2900360 https://doaj.org/article/2ee98abd96564b578814ba23d844210f https://ieeexplore.ieee.org/document/8648386/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Mohamed Younis Aiswarya Murali Meejeong Lee |
author2Str |
Mohamed Younis Aiswarya Murali Meejeong Lee |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2900360 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:21:51.924Z |
_version_ |
1803564259136765952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057663785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308215056.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2900360</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057663785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2ee98abd96564b578814ba23d844210f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sookyoung Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic Local Vehicular Flow Optimization Using Real-Time Traffic Conditions at Multiple Road Intersections</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Dynamic management of vehicular traffic congestion to maximize throughput in urban areas has been drawing increased attention in recent years. For that purpose, a number of adaptive control algorithms have been proposed for individual traffic lights based on the in-flow rate. However, little attention has been given to the traffic throughput maximization problem considering real-time road conditions from multiple intersections. In this paper, we formulate such a problem as maximum integer multi-commodity flow by considering incoming vehicles that have different outgoing directions. Then, we propose a novel adaptive traffic light signal control algorithm which opts to maximize traffic flow through and reduce the waiting time of vehicles at an intersection. The proposed algorithm adjusts traffic light signal phases and durations depending on real-time road condition of local and neighboring intersections. Via SUMO simulation, we demonstrate the effectiveness of the proposed algorithm in terms of traffic throughput and average travel time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive traffic light control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">k-commodity flow problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">traffic flow maximization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic traffic management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mohamed Younis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aiswarya Murali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meejeong Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 28137-28157</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:28137-28157</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2900360</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2ee98abd96564b578814ba23d844210f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8648386/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">28137-28157</subfield></datafield></record></collection>
|
score |
7.4004793 |