Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study
This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edg...
Ausführliche Beschreibung
Autor*in: |
Zhenhui Dai [verfasserIn] Hua Zhang [verfasserIn] Yaoqin Xie [verfasserIn] Lin Zhu [verfasserIn] Bailin Zhang [verfasserIn] Chunya Cai [verfasserIn] Fei Li [verfasserIn] Geng Yang [verfasserIn] Huaizhi Jin [verfasserIn] Xuetao Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 7(2019), Seite 127693-127702 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2019 ; pages:127693-127702 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2019.2934858 |
---|
Katalog-ID: |
DOAJ057683778 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057683778 | ||
003 | DE-627 | ||
005 | 20230501192241.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2019.2934858 |2 doi | |
035 | |a (DE-627)DOAJ057683778 | ||
035 | |a (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Zhenhui Dai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. | ||
650 | 4 | |a Radiotherapy | |
650 | 4 | |a accuracy | |
650 | 4 | |a electromagnetic tracking | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Hua Zhang |e verfasserin |4 aut | |
700 | 0 | |a Yaoqin Xie |e verfasserin |4 aut | |
700 | 0 | |a Lin Zhu |e verfasserin |4 aut | |
700 | 0 | |a Bailin Zhang |e verfasserin |4 aut | |
700 | 0 | |a Chunya Cai |e verfasserin |4 aut | |
700 | 0 | |a Fei Li |e verfasserin |4 aut | |
700 | 0 | |a Geng Yang |e verfasserin |4 aut | |
700 | 0 | |a Huaizhi Jin |e verfasserin |4 aut | |
700 | 0 | |a Xuetao Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 7(2019), Seite 127693-127702 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2019 |g pages:127693-127702 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2019.2934858 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8794804/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2019 |h 127693-127702 |
author_variant |
z d zd h z hz y x yx l z lz b z bz c c cc f l fl g y gy h j hj x w xw |
---|---|
matchkey_str |
article:21693536:2019----::aiainfemtiadoierccuayfdeceeaogtnwteetoa |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
TK |
publishDate |
2019 |
allfields |
10.1109/ACCESS.2019.2934858 doi (DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 DE-627 ger DE-627 rakwb eng TK1-9971 Zhenhui Dai verfasserin aut Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering Hua Zhang verfasserin aut Yaoqin Xie verfasserin aut Lin Zhu verfasserin aut Bailin Zhang verfasserin aut Chunya Cai verfasserin aut Fei Li verfasserin aut Geng Yang verfasserin aut Huaizhi Jin verfasserin aut Xuetao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 127693-127702 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:127693-127702 https://doi.org/10.1109/ACCESS.2019.2934858 kostenfrei https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 kostenfrei https://ieeexplore.ieee.org/document/8794804/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 127693-127702 |
spelling |
10.1109/ACCESS.2019.2934858 doi (DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 DE-627 ger DE-627 rakwb eng TK1-9971 Zhenhui Dai verfasserin aut Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering Hua Zhang verfasserin aut Yaoqin Xie verfasserin aut Lin Zhu verfasserin aut Bailin Zhang verfasserin aut Chunya Cai verfasserin aut Fei Li verfasserin aut Geng Yang verfasserin aut Huaizhi Jin verfasserin aut Xuetao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 127693-127702 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:127693-127702 https://doi.org/10.1109/ACCESS.2019.2934858 kostenfrei https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 kostenfrei https://ieeexplore.ieee.org/document/8794804/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 127693-127702 |
allfields_unstemmed |
10.1109/ACCESS.2019.2934858 doi (DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 DE-627 ger DE-627 rakwb eng TK1-9971 Zhenhui Dai verfasserin aut Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering Hua Zhang verfasserin aut Yaoqin Xie verfasserin aut Lin Zhu verfasserin aut Bailin Zhang verfasserin aut Chunya Cai verfasserin aut Fei Li verfasserin aut Geng Yang verfasserin aut Huaizhi Jin verfasserin aut Xuetao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 127693-127702 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:127693-127702 https://doi.org/10.1109/ACCESS.2019.2934858 kostenfrei https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 kostenfrei https://ieeexplore.ieee.org/document/8794804/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 127693-127702 |
allfieldsGer |
10.1109/ACCESS.2019.2934858 doi (DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 DE-627 ger DE-627 rakwb eng TK1-9971 Zhenhui Dai verfasserin aut Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering Hua Zhang verfasserin aut Yaoqin Xie verfasserin aut Lin Zhu verfasserin aut Bailin Zhang verfasserin aut Chunya Cai verfasserin aut Fei Li verfasserin aut Geng Yang verfasserin aut Huaizhi Jin verfasserin aut Xuetao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 127693-127702 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:127693-127702 https://doi.org/10.1109/ACCESS.2019.2934858 kostenfrei https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 kostenfrei https://ieeexplore.ieee.org/document/8794804/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 127693-127702 |
allfieldsSound |
10.1109/ACCESS.2019.2934858 doi (DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 DE-627 ger DE-627 rakwb eng TK1-9971 Zhenhui Dai verfasserin aut Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering Hua Zhang verfasserin aut Yaoqin Xie verfasserin aut Lin Zhu verfasserin aut Bailin Zhang verfasserin aut Chunya Cai verfasserin aut Fei Li verfasserin aut Geng Yang verfasserin aut Huaizhi Jin verfasserin aut Xuetao Wang verfasserin aut In IEEE Access IEEE, 2014 7(2019), Seite 127693-127702 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:7 year:2019 pages:127693-127702 https://doi.org/10.1109/ACCESS.2019.2934858 kostenfrei https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 kostenfrei https://ieeexplore.ieee.org/document/8794804/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2019 127693-127702 |
language |
English |
source |
In IEEE Access 7(2019), Seite 127693-127702 volume:7 year:2019 pages:127693-127702 |
sourceStr |
In IEEE Access 7(2019), Seite 127693-127702 volume:7 year:2019 pages:127693-127702 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiotherapy accuracy electromagnetic tracking Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Zhenhui Dai @@aut@@ Hua Zhang @@aut@@ Yaoqin Xie @@aut@@ Lin Zhu @@aut@@ Bailin Zhang @@aut@@ Chunya Cai @@aut@@ Fei Li @@aut@@ Geng Yang @@aut@@ Huaizhi Jin @@aut@@ Xuetao Wang @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ057683778 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057683778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501192241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2934858</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057683778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenhui Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic tracking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoqin Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bailin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunya Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Geng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaizhi Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuetao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 127693-127702</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:127693-127702</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2934858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8794804/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">127693-127702</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Zhenhui Dai |
spellingShingle |
Zhenhui Dai misc TK1-9971 misc Radiotherapy misc accuracy misc electromagnetic tracking misc Electrical engineering. Electronics. Nuclear engineering Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
authorStr |
Zhenhui Dai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study Radiotherapy accuracy electromagnetic tracking |
topic |
misc TK1-9971 misc Radiotherapy misc accuracy misc electromagnetic tracking misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Radiotherapy misc accuracy misc electromagnetic tracking misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Radiotherapy misc accuracy misc electromagnetic tracking misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
ctrlnum |
(DE-627)DOAJ057683778 (DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0 |
title_full |
Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
author_sort |
Zhenhui Dai |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
127693 |
author_browse |
Zhenhui Dai Hua Zhang Yaoqin Xie Lin Zhu Bailin Zhang Chunya Cai Fei Li Geng Yang Huaizhi Jin Xuetao Wang |
container_volume |
7 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhenhui Dai |
doi_str_mv |
10.1109/ACCESS.2019.2934858 |
author2-role |
verfasserin |
title_sort |
validation of geometric and dosimetric accuracy of edge accelerator gating with electromagnetic tracking: a phantom study |
callnumber |
TK1-9971 |
title_auth |
Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
abstract |
This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. |
abstractGer |
This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. |
abstract_unstemmed |
This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study |
url |
https://doi.org/10.1109/ACCESS.2019.2934858 https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0 https://ieeexplore.ieee.org/document/8794804/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Hua Zhang Yaoqin Xie Lin Zhu Bailin Zhang Chunya Cai Fei Li Geng Yang Huaizhi Jin Xuetao Wang |
author2Str |
Hua Zhang Yaoqin Xie Lin Zhu Bailin Zhang Chunya Cai Fei Li Geng Yang Huaizhi Jin Xuetao Wang |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2019.2934858 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:29:29.235Z |
_version_ |
1803564738663153664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057683778</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230501192241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2019.2934858</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057683778</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ8e465dae76ad4df28571a5adc83f09b0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhenhui Dai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of Geometric and Dosimetric Accuracy of Edge Accelerator Gating With Electromagnetic Tracking: A Phantom Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work was to devise a comprehensive testing scheme to evaluate the geometric and dosimetric accuracy of the Edge accelerator gating with electromagnetic tracking (EMT) for its safety in clinical application. A CIRS thorax phantom was scanned with four-dimensional cone-beam CT (4D-CBCT) on an Edge accelerator while the simulated tumor was simultaneously tracked with an EMT system using Calypso. The geometric accuracy was validated by comparing the motion trajectories derived from Calypso and 4D-CBCT with the ground truth from motion control software. The two-dimensional and three-dimensional dynamic doses were measured with the Matrixx and ArcCHECK installed on a motion platform, both with and without EMT. For tumor motion with 5, 7.5 mm amplitudes, the average absolute differences of sample position between Calypso and the ground truth were 0.286±0.234 mm, 0.407±0.331 mm respectively. Dosimetric accuracy was validated with 3 mm/3% gamma criterion. The average gamma pass rates of 2D dynamic dose validation based on Matrixx were less than 46% without EMT, 97.3% using 2 mm gating limit, 96% using 3 mm gating limit and 93.4% using 5mm gating limit respectively. The mean 3D dynamic dose validation pass rates based on ArcCHECK were 65.9% without EMT, 96.2% using 3 mm gating limit, and 92.5% using 5 mm gating limit with EMT respectively. The geometric accuracy of the Calypso system in tracking the moving target area was stable at the submillimeter level. The dosimetric accuracy could be improved significantly with EMT using an appropriate gating limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accuracy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electromagnetic tracking</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yaoqin Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bailin Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chunya Cai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Geng Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaizhi Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xuetao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">7(2019), Seite 127693-127702</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:127693-127702</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2019.2934858</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/8e465dae76ad4df28571a5adc83f09b0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8794804/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2019</subfield><subfield code="h">127693-127702</subfield></datafield></record></collection>
|
score |
7.401025 |