On representation varie ties of some HNN-extensions of free groups
In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated an...
Ausführliche Beschreibung
Autor*in: |
Alexandra N. Admiralova [verfasserIn] Valery V. Beniash-Kryvets [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
bel ; Englisch ; Russisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Журнал Белорусского государственного университета: Математика, информатика - Belarusian State University, 2020, (2019), 2, Seite 10-16 |
---|---|
Übergeordnetes Werk: |
year:2019 ; number:2 ; pages:10-16 |
Links: |
---|
Katalog-ID: |
DOAJ057703655 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057703655 | ||
003 | DE-627 | ||
005 | 20230502235547.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||bel c | ||
035 | |a (DE-627)DOAJ057703655 | ||
035 | |a (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a bel |a eng |a rus | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Alexandra N. Admiralova |e verfasserin |4 aut | |
245 | 1 | 0 | |a On representation varie ties of some HNN-extensions of free groups |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. | ||
650 | 4 | |a a group presentation | |
650 | 4 | |a a representation variety | |
650 | 4 | |a a dimension of a variety | |
650 | 4 | |a a rational variety | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Valery V. Beniash-Kryvets |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Журнал Белорусского государственного университета: Математика, информатика |d Belarusian State University, 2020 |g (2019), 2, Seite 10-16 |w (DE-627)1735420964 |x 26173956 |7 nnns |
773 | 1 | 8 | |g year:2019 |g number:2 |g pages:10-16 |
856 | 4 | 0 | |u https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 |z kostenfrei |
856 | 4 | 0 | |u https://journals.bsu.by/index.php/mathematics/article/view/779 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2520-6508 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2617-3956 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2019 |e 2 |h 10-16 |
author_variant |
a n a ana v v b k vvbk |
---|---|
matchkey_str |
article:26173956:2019----::nersnainaiteosmhnxeso |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QA |
publishDate |
2019 |
allfields |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 DE-627 ger DE-627 rakwb bel eng rus QA1-939 Alexandra N. Admiralova verfasserin aut On representation varie ties of some HNN-extensions of free groups 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. a group presentation a representation variety a dimension of a variety a rational variety Mathematics Valery V. Beniash-Kryvets verfasserin aut In Журнал Белорусского государственного университета: Математика, информатика Belarusian State University, 2020 (2019), 2, Seite 10-16 (DE-627)1735420964 26173956 nnns year:2019 number:2 pages:10-16 https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 kostenfrei https://journals.bsu.by/index.php/mathematics/article/view/779 kostenfrei https://doaj.org/toc/2520-6508 Journal toc kostenfrei https://doaj.org/toc/2617-3956 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 2 10-16 |
spelling |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 DE-627 ger DE-627 rakwb bel eng rus QA1-939 Alexandra N. Admiralova verfasserin aut On representation varie ties of some HNN-extensions of free groups 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. a group presentation a representation variety a dimension of a variety a rational variety Mathematics Valery V. Beniash-Kryvets verfasserin aut In Журнал Белорусского государственного университета: Математика, информатика Belarusian State University, 2020 (2019), 2, Seite 10-16 (DE-627)1735420964 26173956 nnns year:2019 number:2 pages:10-16 https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 kostenfrei https://journals.bsu.by/index.php/mathematics/article/view/779 kostenfrei https://doaj.org/toc/2520-6508 Journal toc kostenfrei https://doaj.org/toc/2617-3956 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 2 10-16 |
allfields_unstemmed |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 DE-627 ger DE-627 rakwb bel eng rus QA1-939 Alexandra N. Admiralova verfasserin aut On representation varie ties of some HNN-extensions of free groups 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. a group presentation a representation variety a dimension of a variety a rational variety Mathematics Valery V. Beniash-Kryvets verfasserin aut In Журнал Белорусского государственного университета: Математика, информатика Belarusian State University, 2020 (2019), 2, Seite 10-16 (DE-627)1735420964 26173956 nnns year:2019 number:2 pages:10-16 https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 kostenfrei https://journals.bsu.by/index.php/mathematics/article/view/779 kostenfrei https://doaj.org/toc/2520-6508 Journal toc kostenfrei https://doaj.org/toc/2617-3956 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 2 10-16 |
allfieldsGer |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 DE-627 ger DE-627 rakwb bel eng rus QA1-939 Alexandra N. Admiralova verfasserin aut On representation varie ties of some HNN-extensions of free groups 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. a group presentation a representation variety a dimension of a variety a rational variety Mathematics Valery V. Beniash-Kryvets verfasserin aut In Журнал Белорусского государственного университета: Математика, информатика Belarusian State University, 2020 (2019), 2, Seite 10-16 (DE-627)1735420964 26173956 nnns year:2019 number:2 pages:10-16 https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 kostenfrei https://journals.bsu.by/index.php/mathematics/article/view/779 kostenfrei https://doaj.org/toc/2520-6508 Journal toc kostenfrei https://doaj.org/toc/2617-3956 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 2 10-16 |
allfieldsSound |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 DE-627 ger DE-627 rakwb bel eng rus QA1-939 Alexandra N. Admiralova verfasserin aut On representation varie ties of some HNN-extensions of free groups 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. a group presentation a representation variety a dimension of a variety a rational variety Mathematics Valery V. Beniash-Kryvets verfasserin aut In Журнал Белорусского государственного университета: Математика, информатика Belarusian State University, 2020 (2019), 2, Seite 10-16 (DE-627)1735420964 26173956 nnns year:2019 number:2 pages:10-16 https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 kostenfrei https://journals.bsu.by/index.php/mathematics/article/view/779 kostenfrei https://doaj.org/toc/2520-6508 Journal toc kostenfrei https://doaj.org/toc/2617-3956 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2019 2 10-16 |
language |
Belarusian English Russian |
source |
In Журнал Белорусского государственного университета: Математика, информатика (2019), 2, Seite 10-16 year:2019 number:2 pages:10-16 |
sourceStr |
In Журнал Белорусского государственного университета: Математика, информатика (2019), 2, Seite 10-16 year:2019 number:2 pages:10-16 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
a group presentation a representation variety a dimension of a variety a rational variety Mathematics |
isfreeaccess_bool |
true |
container_title |
Журнал Белорусского государственного университета: Математика, информатика |
authorswithroles_txt_mv |
Alexandra N. Admiralova @@aut@@ Valery V. Beniash-Kryvets @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
1735420964 |
id |
DOAJ057703655 |
language_de |
belorussisch englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057703655</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502235547.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||bel c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057703655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe51ba3053545490ea37ee405bb5920a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">bel</subfield><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexandra N. Admiralova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On representation varie ties of some HNN-extensions of free groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a group presentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a representation variety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a dimension of a variety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a rational variety</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valery V. Beniash-Kryvets</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Журнал Белорусского государственного университета: Математика, информатика</subfield><subfield code="d">Belarusian State University, 2020</subfield><subfield code="g">(2019), 2, Seite 10-16</subfield><subfield code="w">(DE-627)1735420964</subfield><subfield code="x">26173956</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:10-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.bsu.by/index.php/mathematics/article/view/779</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-6508</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2617-3956</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="h">10-16</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Alexandra N. Admiralova |
spellingShingle |
Alexandra N. Admiralova misc QA1-939 misc a group presentation misc a representation variety misc a dimension of a variety misc a rational variety misc Mathematics On representation varie ties of some HNN-extensions of free groups |
authorStr |
Alexandra N. Admiralova |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1735420964 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
26173956 |
topic_title |
QA1-939 On representation varie ties of some HNN-extensions of free groups a group presentation a representation variety a dimension of a variety a rational variety |
topic |
misc QA1-939 misc a group presentation misc a representation variety misc a dimension of a variety misc a rational variety misc Mathematics |
topic_unstemmed |
misc QA1-939 misc a group presentation misc a representation variety misc a dimension of a variety misc a rational variety misc Mathematics |
topic_browse |
misc QA1-939 misc a group presentation misc a representation variety misc a dimension of a variety misc a rational variety misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Журнал Белорусского государственного университета: Математика, информатика |
hierarchy_parent_id |
1735420964 |
hierarchy_top_title |
Журнал Белорусского государственного университета: Математика, информатика |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1735420964 |
title |
On representation varie ties of some HNN-extensions of free groups |
ctrlnum |
(DE-627)DOAJ057703655 (DE-599)DOAJe51ba3053545490ea37ee405bb5920a8 |
title_full |
On representation varie ties of some HNN-extensions of free groups |
author_sort |
Alexandra N. Admiralova |
journal |
Журнал Белорусского государственного университета: Математика, информатика |
journalStr |
Журнал Белорусского государственного университета: Математика, информатика |
callnumber-first-code |
Q |
lang_code |
bel eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Alexandra N. Admiralova Valery V. Beniash-Kryvets |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Alexandra N. Admiralova |
author2-role |
verfasserin |
title_sort |
on representation varie ties of some hnn-extensions of free groups |
callnumber |
QA1-939 |
title_auth |
On representation varie ties of some HNN-extensions of free groups |
abstract |
In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. |
abstractGer |
In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. |
abstract_unstemmed |
In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On representation varie ties of some HNN-extensions of free groups |
url |
https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8 https://journals.bsu.by/index.php/mathematics/article/view/779 https://doaj.org/toc/2520-6508 https://doaj.org/toc/2617-3956 |
remote_bool |
true |
author2 |
Valery V. Beniash-Kryvets |
author2Str |
Valery V. Beniash-Kryvets |
ppnlink |
1735420964 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T13:36:39.254Z |
_version_ |
1803565189569708032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057703655</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502235547.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||bel c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057703655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe51ba3053545490ea37ee405bb5920a8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">bel</subfield><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alexandra N. Admiralova</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On representation varie ties of some HNN-extensions of free groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the article we provide the description of the structure and the properties of representation varieties Rn(G(p,q)) of the groups with the presentation G(p,q) = ‹x1,…, x2, t|t(x12…xg2)q›, where g ≥ 3, |p| < q ≥ 1. Irreducible components of Rn(G(p,q)) are found, their dimensions are calculated and it is proved, that every irreducible component of Rn(G(p,q)) is a rational variety.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a group presentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a representation variety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a dimension of a variety</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">a rational variety</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Valery V. Beniash-Kryvets</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Журнал Белорусского государственного университета: Математика, информатика</subfield><subfield code="d">Belarusian State University, 2020</subfield><subfield code="g">(2019), 2, Seite 10-16</subfield><subfield code="w">(DE-627)1735420964</subfield><subfield code="x">26173956</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:10-16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e51ba3053545490ea37ee405bb5920a8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.bsu.by/index.php/mathematics/article/view/779</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2520-6508</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2617-3956</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="h">10-16</subfield></datafield></record></collection>
|
score |
7.40172 |