A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App
Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visua...
Ausführliche Beschreibung
Autor*in: |
Jana Mäcken [verfasserIn] Marie Wiegand [verfasserIn] Mathias Müller [verfasserIn] Alexander Krawinkel [verfasserIn] Michael Linnebank [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Brain Sciences - MDPI AG, 2012, 11(2021), 9, p 1235 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:9, p 1235 |
Links: |
---|
DOI / URN: |
10.3390/brainsci11091235 |
---|
Katalog-ID: |
DOAJ057726558 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057726558 | ||
003 | DE-627 | ||
005 | 20240412161019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/brainsci11091235 |2 doi | |
035 | |a (DE-627)DOAJ057726558 | ||
035 | |a (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC321-571 | |
100 | 0 | |a Jana Mäcken |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. | ||
650 | 4 | |a fatigue | |
650 | 4 | |a multiple sclerosis | |
650 | 4 | |a mHealth | |
650 | 4 | |a intervention | |
650 | 4 | |a mobile application | |
653 | 0 | |a Neurosciences. Biological psychiatry. Neuropsychiatry | |
700 | 0 | |a Marie Wiegand |e verfasserin |4 aut | |
700 | 0 | |a Mathias Müller |e verfasserin |4 aut | |
700 | 0 | |a Alexander Krawinkel |e verfasserin |4 aut | |
700 | 0 | |a Michael Linnebank |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Brain Sciences |d MDPI AG, 2012 |g 11(2021), 9, p 1235 |w (DE-627)687718139 |w (DE-600)2651993-8 |x 20763425 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:9, p 1235 |
856 | 4 | 0 | |u https://doi.org/10.3390/brainsci11091235 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3425/11/9/1235 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3425 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 9, p 1235 |
author_variant |
j m jm m w mw m m mm a k ak m l ml |
---|---|
matchkey_str |
article:20763425:2021----::mblapomauigelieaiuiptetwtmlilslrss |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.3390/brainsci11091235 doi (DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c DE-627 ger DE-627 rakwb eng RC321-571 Jana Mäcken verfasserin aut A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry Marie Wiegand verfasserin aut Mathias Müller verfasserin aut Alexander Krawinkel verfasserin aut Michael Linnebank verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 9, p 1235 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:9, p 1235 https://doi.org/10.3390/brainsci11091235 kostenfrei https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c kostenfrei https://www.mdpi.com/2076-3425/11/9/1235 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 9, p 1235 |
spelling |
10.3390/brainsci11091235 doi (DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c DE-627 ger DE-627 rakwb eng RC321-571 Jana Mäcken verfasserin aut A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry Marie Wiegand verfasserin aut Mathias Müller verfasserin aut Alexander Krawinkel verfasserin aut Michael Linnebank verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 9, p 1235 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:9, p 1235 https://doi.org/10.3390/brainsci11091235 kostenfrei https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c kostenfrei https://www.mdpi.com/2076-3425/11/9/1235 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 9, p 1235 |
allfields_unstemmed |
10.3390/brainsci11091235 doi (DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c DE-627 ger DE-627 rakwb eng RC321-571 Jana Mäcken verfasserin aut A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry Marie Wiegand verfasserin aut Mathias Müller verfasserin aut Alexander Krawinkel verfasserin aut Michael Linnebank verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 9, p 1235 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:9, p 1235 https://doi.org/10.3390/brainsci11091235 kostenfrei https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c kostenfrei https://www.mdpi.com/2076-3425/11/9/1235 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 9, p 1235 |
allfieldsGer |
10.3390/brainsci11091235 doi (DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c DE-627 ger DE-627 rakwb eng RC321-571 Jana Mäcken verfasserin aut A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry Marie Wiegand verfasserin aut Mathias Müller verfasserin aut Alexander Krawinkel verfasserin aut Michael Linnebank verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 9, p 1235 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:9, p 1235 https://doi.org/10.3390/brainsci11091235 kostenfrei https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c kostenfrei https://www.mdpi.com/2076-3425/11/9/1235 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 9, p 1235 |
allfieldsSound |
10.3390/brainsci11091235 doi (DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c DE-627 ger DE-627 rakwb eng RC321-571 Jana Mäcken verfasserin aut A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry Marie Wiegand verfasserin aut Mathias Müller verfasserin aut Alexander Krawinkel verfasserin aut Michael Linnebank verfasserin aut In Brain Sciences MDPI AG, 2012 11(2021), 9, p 1235 (DE-627)687718139 (DE-600)2651993-8 20763425 nnns volume:11 year:2021 number:9, p 1235 https://doi.org/10.3390/brainsci11091235 kostenfrei https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c kostenfrei https://www.mdpi.com/2076-3425/11/9/1235 kostenfrei https://doaj.org/toc/2076-3425 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 9, p 1235 |
language |
English |
source |
In Brain Sciences 11(2021), 9, p 1235 volume:11 year:2021 number:9, p 1235 |
sourceStr |
In Brain Sciences 11(2021), 9, p 1235 volume:11 year:2021 number:9, p 1235 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fatigue multiple sclerosis mHealth intervention mobile application Neurosciences. Biological psychiatry. Neuropsychiatry |
isfreeaccess_bool |
true |
container_title |
Brain Sciences |
authorswithroles_txt_mv |
Jana Mäcken @@aut@@ Marie Wiegand @@aut@@ Mathias Müller @@aut@@ Alexander Krawinkel @@aut@@ Michael Linnebank @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
687718139 |
id |
DOAJ057726558 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057726558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/brainsci11091235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057726558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jana Mäcken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple sclerosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mHealth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intervention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile application</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Wiegand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathias Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Krawinkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Linnebank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Brain Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 9, p 1235</subfield><subfield code="w">(DE-627)687718139</subfield><subfield code="w">(DE-600)2651993-8</subfield><subfield code="x">20763425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1235</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/brainsci11091235</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3425/11/9/1235</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1235</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Jana Mäcken |
spellingShingle |
Jana Mäcken misc RC321-571 misc fatigue misc multiple sclerosis misc mHealth misc intervention misc mobile application misc Neurosciences. Biological psychiatry. Neuropsychiatry A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
authorStr |
Jana Mäcken |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)687718139 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC321-571 |
illustrated |
Not Illustrated |
issn |
20763425 |
topic_title |
RC321-571 A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App fatigue multiple sclerosis mHealth intervention mobile application |
topic |
misc RC321-571 misc fatigue misc multiple sclerosis misc mHealth misc intervention misc mobile application misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_unstemmed |
misc RC321-571 misc fatigue misc multiple sclerosis misc mHealth misc intervention misc mobile application misc Neurosciences. Biological psychiatry. Neuropsychiatry |
topic_browse |
misc RC321-571 misc fatigue misc multiple sclerosis misc mHealth misc intervention misc mobile application misc Neurosciences. Biological psychiatry. Neuropsychiatry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Brain Sciences |
hierarchy_parent_id |
687718139 |
hierarchy_top_title |
Brain Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)687718139 (DE-600)2651993-8 |
title |
A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
ctrlnum |
(DE-627)DOAJ057726558 (DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c |
title_full |
A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
author_sort |
Jana Mäcken |
journal |
Brain Sciences |
journalStr |
Brain Sciences |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Jana Mäcken Marie Wiegand Mathias Müller Alexander Krawinkel Michael Linnebank |
container_volume |
11 |
class |
RC321-571 |
format_se |
Elektronische Aufsätze |
author-letter |
Jana Mäcken |
doi_str_mv |
10.3390/brainsci11091235 |
author2-role |
verfasserin |
title_sort |
mobile app for measuring real time fatigue in patients with multiple sclerosis: introducing the fimo health app |
callnumber |
RC321-571 |
title_auth |
A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
abstract |
Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. |
abstractGer |
Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. |
abstract_unstemmed |
Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
9, p 1235 |
title_short |
A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App |
url |
https://doi.org/10.3390/brainsci11091235 https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c https://www.mdpi.com/2076-3425/11/9/1235 https://doaj.org/toc/2076-3425 |
remote_bool |
true |
author2 |
Marie Wiegand Mathias Müller Alexander Krawinkel Michael Linnebank |
author2Str |
Marie Wiegand Mathias Müller Alexander Krawinkel Michael Linnebank |
ppnlink |
687718139 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/brainsci11091235 |
callnumber-a |
RC321-571 |
up_date |
2024-07-03T13:44:50.034Z |
_version_ |
1803565704191934464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057726558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412161019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/brainsci11091235</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057726558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5cdbb6d7ac424a5b802ba97adb279e9c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC321-571</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jana Mäcken</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Mobile App for Measuring Real Time Fatigue in Patients with Multiple Sclerosis: Introducing the Fimo Health App</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although fatigue is one of the most disabling symptoms of MS, its pathogenesis is not well understood yet. This study aims to introduce a new holistic approach to measure fatigue and its influencing factors via a mobile app. Fatigue is measured with different patient-reported outcome measures (Visual Analog Scale, Fatigue Severity Scale) and tests (Symbol Digit Modalities Test). The influencing vital and environmental factors are captured with a smartwatch and phone sensors. Patients can track these factors within the app. To individually counteract their fatigue, a fatigue course, based on the current treatment guidelines, was implemented. The course implies knowledge about fatigue and MS, exercises, energy-conservation management, and cognitive behavioral therapy. Based on the Transtheoretical Model of Behavior Change, the design of the Fimo health app follows the ten strategies of the process of change, which is a proven approach to designing health intervention programs. By monitoring fatigue and individual influencing factors, patients can better understand and manage their fatigue. They can share their data and insights about fatigue and its influencing factors with their doctors. Thus, they can receive individualized therapies and drug plans.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatigue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple sclerosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mHealth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intervention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mobile application</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neurosciences. Biological psychiatry. Neuropsychiatry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Wiegand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mathias Müller</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Krawinkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Linnebank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Brain Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 9, p 1235</subfield><subfield code="w">(DE-627)687718139</subfield><subfield code="w">(DE-600)2651993-8</subfield><subfield code="x">20763425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:9, p 1235</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/brainsci11091235</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5cdbb6d7ac424a5b802ba97adb279e9c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3425/11/9/1235</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3425</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">9, p 1235</subfield></datafield></record></collection>
|
score |
7.402112 |