Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches
Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield...
Ausführliche Beschreibung
Autor*in: |
Amr Abd-Elrahman [verfasserIn] Feng Wu [verfasserIn] Shinsuke Agehara [verfasserIn] Katie Britt [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: ISPRS International Journal of Geo-Information - MDPI AG, 2012, 10(2021), 4, p 239 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2021 ; number:4, p 239 |
Links: |
---|
DOI / URN: |
10.3390/ijgi10040239 |
---|
Katalog-ID: |
DOAJ05775294X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05775294X | ||
003 | DE-627 | ||
005 | 20240412184810.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijgi10040239 |2 doi | |
035 | |a (DE-627)DOAJ05775294X | ||
035 | |a (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a G1-922 | |
100 | 0 | |a Amr Abd-Elrahman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. | ||
650 | 4 | |a canopy size metrics | |
650 | 4 | |a <i<Fragaria</i< × <i<ananassa</i< | |
650 | 4 | |a high-resolution | |
650 | 4 | |a image analysis | |
650 | 4 | |a regression model | |
653 | 0 | |a Geography (General) | |
700 | 0 | |a Feng Wu |e verfasserin |4 aut | |
700 | 0 | |a Shinsuke Agehara |e verfasserin |4 aut | |
700 | 0 | |a Katie Britt |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t ISPRS International Journal of Geo-Information |d MDPI AG, 2012 |g 10(2021), 4, p 239 |w (DE-627)689130961 |w (DE-600)2655790-3 |x 22209964 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2021 |g number:4, p 239 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijgi10040239 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2220-9964/10/4/239 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2220-9964 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2021 |e 4, p 239 |
author_variant |
a a e aae f w fw s a sa k b kb |
---|---|
matchkey_str |
article:22209964:2021----::mrvnsrweryedrdcinynertngonbsdaoym |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
G |
publishDate |
2021 |
allfields |
10.3390/ijgi10040239 doi (DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 DE-627 ger DE-627 rakwb eng G1-922 Amr Abd-Elrahman verfasserin aut Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) Feng Wu verfasserin aut Shinsuke Agehara verfasserin aut Katie Britt verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 10(2021), 4, p 239 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:10 year:2021 number:4, p 239 https://doi.org/10.3390/ijgi10040239 kostenfrei https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 kostenfrei https://www.mdpi.com/2220-9964/10/4/239 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2021 4, p 239 |
spelling |
10.3390/ijgi10040239 doi (DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 DE-627 ger DE-627 rakwb eng G1-922 Amr Abd-Elrahman verfasserin aut Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) Feng Wu verfasserin aut Shinsuke Agehara verfasserin aut Katie Britt verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 10(2021), 4, p 239 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:10 year:2021 number:4, p 239 https://doi.org/10.3390/ijgi10040239 kostenfrei https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 kostenfrei https://www.mdpi.com/2220-9964/10/4/239 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2021 4, p 239 |
allfields_unstemmed |
10.3390/ijgi10040239 doi (DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 DE-627 ger DE-627 rakwb eng G1-922 Amr Abd-Elrahman verfasserin aut Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) Feng Wu verfasserin aut Shinsuke Agehara verfasserin aut Katie Britt verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 10(2021), 4, p 239 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:10 year:2021 number:4, p 239 https://doi.org/10.3390/ijgi10040239 kostenfrei https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 kostenfrei https://www.mdpi.com/2220-9964/10/4/239 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2021 4, p 239 |
allfieldsGer |
10.3390/ijgi10040239 doi (DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 DE-627 ger DE-627 rakwb eng G1-922 Amr Abd-Elrahman verfasserin aut Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) Feng Wu verfasserin aut Shinsuke Agehara verfasserin aut Katie Britt verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 10(2021), 4, p 239 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:10 year:2021 number:4, p 239 https://doi.org/10.3390/ijgi10040239 kostenfrei https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 kostenfrei https://www.mdpi.com/2220-9964/10/4/239 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2021 4, p 239 |
allfieldsSound |
10.3390/ijgi10040239 doi (DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 DE-627 ger DE-627 rakwb eng G1-922 Amr Abd-Elrahman verfasserin aut Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) Feng Wu verfasserin aut Shinsuke Agehara verfasserin aut Katie Britt verfasserin aut In ISPRS International Journal of Geo-Information MDPI AG, 2012 10(2021), 4, p 239 (DE-627)689130961 (DE-600)2655790-3 22209964 nnns volume:10 year:2021 number:4, p 239 https://doi.org/10.3390/ijgi10040239 kostenfrei https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 kostenfrei https://www.mdpi.com/2220-9964/10/4/239 kostenfrei https://doaj.org/toc/2220-9964 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 10 2021 4, p 239 |
language |
English |
source |
In ISPRS International Journal of Geo-Information 10(2021), 4, p 239 volume:10 year:2021 number:4, p 239 |
sourceStr |
In ISPRS International Journal of Geo-Information 10(2021), 4, p 239 volume:10 year:2021 number:4, p 239 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model Geography (General) |
isfreeaccess_bool |
true |
container_title |
ISPRS International Journal of Geo-Information |
authorswithroles_txt_mv |
Amr Abd-Elrahman @@aut@@ Feng Wu @@aut@@ Shinsuke Agehara @@aut@@ Katie Britt @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
689130961 |
id |
DOAJ05775294X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05775294X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412184810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi10040239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05775294X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amr Abd-Elrahman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">canopy size metrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Fragaria</i< × <i<ananassa</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regression model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shinsuke Agehara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katie Britt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2021), 4, p 239</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4, p 239</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi10040239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2220-9964/10/4/239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">4, p 239</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Amr Abd-Elrahman |
spellingShingle |
Amr Abd-Elrahman misc G1-922 misc canopy size metrics misc <i<Fragaria</i< × <i<ananassa</i< misc high-resolution misc image analysis misc regression model misc Geography (General) Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
authorStr |
Amr Abd-Elrahman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689130961 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
G1-922 |
illustrated |
Not Illustrated |
issn |
22209964 |
topic_title |
G1-922 Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches canopy size metrics <i<Fragaria</i< × <i<ananassa</i< high-resolution image analysis regression model |
topic |
misc G1-922 misc canopy size metrics misc <i<Fragaria</i< × <i<ananassa</i< misc high-resolution misc image analysis misc regression model misc Geography (General) |
topic_unstemmed |
misc G1-922 misc canopy size metrics misc <i<Fragaria</i< × <i<ananassa</i< misc high-resolution misc image analysis misc regression model misc Geography (General) |
topic_browse |
misc G1-922 misc canopy size metrics misc <i<Fragaria</i< × <i<ananassa</i< misc high-resolution misc image analysis misc regression model misc Geography (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS International Journal of Geo-Information |
hierarchy_parent_id |
689130961 |
hierarchy_top_title |
ISPRS International Journal of Geo-Information |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689130961 (DE-600)2655790-3 |
title |
Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
ctrlnum |
(DE-627)DOAJ05775294X (DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7 |
title_full |
Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
author_sort |
Amr Abd-Elrahman |
journal |
ISPRS International Journal of Geo-Information |
journalStr |
ISPRS International Journal of Geo-Information |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Amr Abd-Elrahman Feng Wu Shinsuke Agehara Katie Britt |
container_volume |
10 |
class |
G1-922 |
format_se |
Elektronische Aufsätze |
author-letter |
Amr Abd-Elrahman |
doi_str_mv |
10.3390/ijgi10040239 |
author2-role |
verfasserin |
title_sort |
improving strawberry yield prediction by integrating ground-based canopy images in modeling approaches |
callnumber |
G1-922 |
title_auth |
Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
abstract |
Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. |
abstractGer |
Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. |
abstract_unstemmed |
Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
4, p 239 |
title_short |
Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches |
url |
https://doi.org/10.3390/ijgi10040239 https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7 https://www.mdpi.com/2220-9964/10/4/239 https://doaj.org/toc/2220-9964 |
remote_bool |
true |
author2 |
Feng Wu Shinsuke Agehara Katie Britt |
author2Str |
Feng Wu Shinsuke Agehara Katie Britt |
ppnlink |
689130961 |
callnumber-subject |
G - General Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijgi10040239 |
callnumber-a |
G1-922 |
up_date |
2024-07-03T13:53:52.341Z |
_version_ |
1803566272842039296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05775294X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412184810.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijgi10040239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05775294X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4f92ed3140e447e3843fc4a6171866c7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">G1-922</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Amr Abd-Elrahman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving Strawberry Yield Prediction by Integrating Ground-Based Canopy Images in Modeling Approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Strawberries (<i<Fragaria</i< × <i<ananassa</i< Duch.) are highly perishable fruit. Timely prediction of yield is crucial for labor management and marketing decision-making. This study demonstrates the use of high-resolution ground-based imagery, in addition to previous yield and weather information, for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified mosaics and digital surface models were created to extract canopy size variables (canopy area, average canopy height, canopy height standard deviation, and canopy volume) and visually count flower and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to develop prediction models. Using image-based counts and canopy variables, flower and fruit counts were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at different time intervals was increased by 10–29% compared to those models without image-derived variables. These results suggest that close-range high-resolution images can contribute to yield prediction and could assist the industry with decision making by changing growers’ prediction practices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">canopy size metrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Fragaria</i< × <i<ananassa</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regression model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geography (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Feng Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shinsuke Agehara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Katie Britt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">ISPRS International Journal of Geo-Information</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2021), 4, p 239</subfield><subfield code="w">(DE-627)689130961</subfield><subfield code="w">(DE-600)2655790-3</subfield><subfield code="x">22209964</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4, p 239</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijgi10040239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4f92ed3140e447e3843fc4a6171866c7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2220-9964/10/4/239</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2220-9964</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2021</subfield><subfield code="e">4, p 239</subfield></datafield></record></collection>
|
score |
7.403078 |