<it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs
<p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it&l...
Ausführliche Beschreibung
Autor*in: |
Hassan Musa A [verfasserIn] Melo Mariane B [verfasserIn] Haas Brian [verfasserIn] Jensen Kirk D C [verfasserIn] Saeij Jeroen P J [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BMC Genomics - BMC, 2003, 13(2012), 1, p 696 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2012 ; number:1, p 696 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-13-696 |
---|
Katalog-ID: |
DOAJ057754519 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057754519 | ||
003 | DE-627 | ||
005 | 20230308220015.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-13-696 |2 doi | |
035 | |a (DE-627)DOAJ057754519 | ||
035 | |a (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP248.13-248.65 | |
050 | 0 | |a QH426-470 | |
100 | 0 | |a Hassan Musa A |e verfasserin |4 aut | |
245 | 1 | 0 | |a <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< | ||
650 | 4 | |a <it<Toxoplasma</it< | |
650 | 4 | |a RNA-seq | |
650 | 4 | |a Trinity | |
650 | 4 | |a LincRNA | |
650 | 4 | |a Alternative splicing | |
650 | 4 | |a Transcriptome | |
653 | 0 | |a Biotechnology | |
653 | 0 | |a Genetics | |
700 | 0 | |a Melo Mariane B |e verfasserin |4 aut | |
700 | 0 | |a Haas Brian |e verfasserin |4 aut | |
700 | 0 | |a Jensen Kirk D C |e verfasserin |4 aut | |
700 | 0 | |a Saeij Jeroen P J |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Genomics |d BMC, 2003 |g 13(2012), 1, p 696 |w (DE-627)326644954 |w (DE-600)2041499-7 |x 14712164 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2012 |g number:1, p 696 |
856 | 4 | 0 | |u https://doi.org/10.1186/1471-2164-13-696 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 |z kostenfrei |
856 | 4 | 0 | |u http://www.biomedcentral.com/1471-2164/13/696 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2164 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2012 |e 1, p 696 |
author_variant |
h m a hma m m b mmb h b hb j k d c jkdc s j p j sjpj |
---|---|
matchkey_str |
article:14712164:2012----::teooteosrcinfhitxpamgniitasrpoemrvsnhcreteoenoainnrvaslentvls |
hierarchy_sort_str |
2012 |
callnumber-subject-code |
TP |
publishDate |
2012 |
allfields |
10.1186/1471-2164-13-696 doi (DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Hassan Musa A verfasserin aut <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics Melo Mariane B verfasserin aut Haas Brian verfasserin aut Jensen Kirk D C verfasserin aut Saeij Jeroen P J verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 696 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 696 https://doi.org/10.1186/1471-2164-13-696 kostenfrei https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 kostenfrei http://www.biomedcentral.com/1471-2164/13/696 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 696 |
spelling |
10.1186/1471-2164-13-696 doi (DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Hassan Musa A verfasserin aut <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics Melo Mariane B verfasserin aut Haas Brian verfasserin aut Jensen Kirk D C verfasserin aut Saeij Jeroen P J verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 696 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 696 https://doi.org/10.1186/1471-2164-13-696 kostenfrei https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 kostenfrei http://www.biomedcentral.com/1471-2164/13/696 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 696 |
allfields_unstemmed |
10.1186/1471-2164-13-696 doi (DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Hassan Musa A verfasserin aut <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics Melo Mariane B verfasserin aut Haas Brian verfasserin aut Jensen Kirk D C verfasserin aut Saeij Jeroen P J verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 696 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 696 https://doi.org/10.1186/1471-2164-13-696 kostenfrei https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 kostenfrei http://www.biomedcentral.com/1471-2164/13/696 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 696 |
allfieldsGer |
10.1186/1471-2164-13-696 doi (DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Hassan Musa A verfasserin aut <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics Melo Mariane B verfasserin aut Haas Brian verfasserin aut Jensen Kirk D C verfasserin aut Saeij Jeroen P J verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 696 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 696 https://doi.org/10.1186/1471-2164-13-696 kostenfrei https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 kostenfrei http://www.biomedcentral.com/1471-2164/13/696 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 696 |
allfieldsSound |
10.1186/1471-2164-13-696 doi (DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 DE-627 ger DE-627 rakwb eng TP248.13-248.65 QH426-470 Hassan Musa A verfasserin aut <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics Melo Mariane B verfasserin aut Haas Brian verfasserin aut Jensen Kirk D C verfasserin aut Saeij Jeroen P J verfasserin aut In BMC Genomics BMC, 2003 13(2012), 1, p 696 (DE-627)326644954 (DE-600)2041499-7 14712164 nnns volume:13 year:2012 number:1, p 696 https://doi.org/10.1186/1471-2164-13-696 kostenfrei https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 kostenfrei http://www.biomedcentral.com/1471-2164/13/696 kostenfrei https://doaj.org/toc/1471-2164 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2012 1, p 696 |
language |
English |
source |
In BMC Genomics 13(2012), 1, p 696 volume:13 year:2012 number:1, p 696 |
sourceStr |
In BMC Genomics 13(2012), 1, p 696 volume:13 year:2012 number:1, p 696 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome Biotechnology Genetics |
isfreeaccess_bool |
true |
container_title |
BMC Genomics |
authorswithroles_txt_mv |
Hassan Musa A @@aut@@ Melo Mariane B @@aut@@ Haas Brian @@aut@@ Jensen Kirk D C @@aut@@ Saeij Jeroen P J @@aut@@ |
publishDateDaySort_date |
2012-01-01T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
DOAJ057754519 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057754519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308220015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-13-696</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057754519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hassan Musa A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><it<Toxoplasma</it<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-seq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LincRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Melo Mariane B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haas Brian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jensen Kirk D C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saeij Jeroen P J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">13(2012), 1, p 696</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1, p 696</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2164-13-696</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2164/13/696</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2012</subfield><subfield code="e">1, p 696</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Hassan Musa A |
spellingShingle |
Hassan Musa A misc TP248.13-248.65 misc QH426-470 misc <it<Toxoplasma</it< misc RNA-seq misc Trinity misc LincRNA misc Alternative splicing misc Transcriptome misc Biotechnology misc Genetics <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
authorStr |
Hassan Musa A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP248 |
illustrated |
Not Illustrated |
issn |
14712164 |
topic_title |
TP248.13-248.65 QH426-470 <it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs <it<Toxoplasma</it< RNA-seq Trinity LincRNA Alternative splicing Transcriptome |
topic |
misc TP248.13-248.65 misc QH426-470 misc <it<Toxoplasma</it< misc RNA-seq misc Trinity misc LincRNA misc Alternative splicing misc Transcriptome misc Biotechnology misc Genetics |
topic_unstemmed |
misc TP248.13-248.65 misc QH426-470 misc <it<Toxoplasma</it< misc RNA-seq misc Trinity misc LincRNA misc Alternative splicing misc Transcriptome misc Biotechnology misc Genetics |
topic_browse |
misc TP248.13-248.65 misc QH426-470 misc <it<Toxoplasma</it< misc RNA-seq misc Trinity misc LincRNA misc Alternative splicing misc Transcriptome misc Biotechnology misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC Genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
<it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
ctrlnum |
(DE-627)DOAJ057754519 (DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822 |
title_full |
<it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
author_sort |
Hassan Musa A |
journal |
BMC Genomics |
journalStr |
BMC Genomics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
author_browse |
Hassan Musa A Melo Mariane B Haas Brian Jensen Kirk D C Saeij Jeroen P J |
container_volume |
13 |
class |
TP248.13-248.65 QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Hassan Musa A |
doi_str_mv |
10.1186/1471-2164-13-696 |
author2-role |
verfasserin |
title_sort |
<it<de novo</it< reconstruction of the <it<toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding rnas |
callnumber |
TP248.13-248.65 |
title_auth |
<it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
abstract |
<p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< |
abstractGer |
<p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< |
abstract_unstemmed |
<p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 696 |
title_short |
<it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs |
url |
https://doi.org/10.1186/1471-2164-13-696 https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822 http://www.biomedcentral.com/1471-2164/13/696 https://doaj.org/toc/1471-2164 |
remote_bool |
true |
author2 |
Melo Mariane B Haas Brian Jensen Kirk D C Saeij Jeroen P J |
author2Str |
Melo Mariane B Haas Brian Jensen Kirk D C Saeij Jeroen P J |
ppnlink |
326644954 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-13-696 |
callnumber-a |
TP248.13-248.65 |
up_date |
2024-07-03T13:54:25.755Z |
_version_ |
1803566307883352064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057754519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308220015.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-13-696</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057754519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJae97bb3ab2fb41cf9ab086fb29254822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP248.13-248.65</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Hassan Musa A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><it<De novo</it< reconstruction of the <it<Toxoplasma gondii</it< transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, <it<Toxoplasma gondii</it<, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in <it<Toxoplasma gondii</it< is unknown. In this study, we used <it<de novo</it< transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in <it<Toxoplasma</it< and to improve the current <it<Toxoplasma</it< gene annotations.</p< <p<Results</p< <p<We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel <it<Toxoplasma</it< genes, and putative non-coding RNAs.</p< <p<Conclusion</p< <p<RNA-seq data and <it<de novo</it< transcript assembly provide a robust way to update incompletely annotated genomes, like the <it<Toxoplasma</it< genome. We have used RNA-seq to improve the annotation of several <it<Toxoplasma</it< genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs.</p<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><it<Toxoplasma</it<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-seq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trinity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LincRNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alternative splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Melo Mariane B</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haas Brian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jensen Kirk D C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Saeij Jeroen P J</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Genomics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">13(2012), 1, p 696</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">14712164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1, p 696</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2164-13-696</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ae97bb3ab2fb41cf9ab086fb29254822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2164/13/696</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2164</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2012</subfield><subfield code="e">1, p 696</subfield></datafield></record></collection>
|
score |
7.4007883 |