Integrated Weed Management in High Density Fruit Orchards
Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be...
Ausführliche Beschreibung
Autor*in: |
Md Jebu Mia [verfasserIn] Francesca Massetani [verfasserIn] Giorgio Murri [verfasserIn] Jacopo Facchi [verfasserIn] Elga Monaci [verfasserIn] Luca Amadio [verfasserIn] Davide Neri [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Agronomy - MDPI AG, 2012, 10(2020), 10, p 1492 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2020 ; number:10, p 1492 |
Links: |
---|
DOI / URN: |
10.3390/agronomy10101492 |
---|
Katalog-ID: |
DOAJ057861501 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057861501 | ||
003 | DE-627 | ||
005 | 20240412212525.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/agronomy10101492 |2 doi | |
035 | |a (DE-627)DOAJ057861501 | ||
035 | |a (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Md Jebu Mia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Integrated Weed Management in High Density Fruit Orchards |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. | ||
650 | 4 | |a weed management | |
650 | 4 | |a integrated tillage | |
650 | 4 | |a integrated mowing | |
650 | 4 | |a herbicide | |
650 | 4 | |a weed biodiversity | |
650 | 4 | |a fruit production | |
653 | 0 | |a Agriculture | |
653 | 0 | |a S | |
700 | 0 | |a Francesca Massetani |e verfasserin |4 aut | |
700 | 0 | |a Giorgio Murri |e verfasserin |4 aut | |
700 | 0 | |a Jacopo Facchi |e verfasserin |4 aut | |
700 | 0 | |a Elga Monaci |e verfasserin |4 aut | |
700 | 0 | |a Luca Amadio |e verfasserin |4 aut | |
700 | 0 | |a Davide Neri |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Agronomy |d MDPI AG, 2012 |g 10(2020), 10, p 1492 |w (DE-627)658000543 |w (DE-600)2607043-1 |x 20734395 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2020 |g number:10, p 1492 |
856 | 4 | 0 | |u https://doi.org/10.3390/agronomy10101492 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/405d8510e60e41cb8589427fca3648ed |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4395/10/10/1492 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4395 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2020 |e 10, p 1492 |
author_variant |
m j m mjm f m fm g m gm j f jf e m em l a la d n dn |
---|---|
matchkey_str |
article:20734395:2020----::nertdedaaeetnihest |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.3390/agronomy10101492 doi (DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed DE-627 ger DE-627 rakwb eng Md Jebu Mia verfasserin aut Integrated Weed Management in High Density Fruit Orchards 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S Francesca Massetani verfasserin aut Giorgio Murri verfasserin aut Jacopo Facchi verfasserin aut Elga Monaci verfasserin aut Luca Amadio verfasserin aut Davide Neri verfasserin aut In Agronomy MDPI AG, 2012 10(2020), 10, p 1492 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:10 year:2020 number:10, p 1492 https://doi.org/10.3390/agronomy10101492 kostenfrei https://doaj.org/article/405d8510e60e41cb8589427fca3648ed kostenfrei https://www.mdpi.com/2073-4395/10/10/1492 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1492 |
spelling |
10.3390/agronomy10101492 doi (DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed DE-627 ger DE-627 rakwb eng Md Jebu Mia verfasserin aut Integrated Weed Management in High Density Fruit Orchards 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S Francesca Massetani verfasserin aut Giorgio Murri verfasserin aut Jacopo Facchi verfasserin aut Elga Monaci verfasserin aut Luca Amadio verfasserin aut Davide Neri verfasserin aut In Agronomy MDPI AG, 2012 10(2020), 10, p 1492 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:10 year:2020 number:10, p 1492 https://doi.org/10.3390/agronomy10101492 kostenfrei https://doaj.org/article/405d8510e60e41cb8589427fca3648ed kostenfrei https://www.mdpi.com/2073-4395/10/10/1492 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1492 |
allfields_unstemmed |
10.3390/agronomy10101492 doi (DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed DE-627 ger DE-627 rakwb eng Md Jebu Mia verfasserin aut Integrated Weed Management in High Density Fruit Orchards 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S Francesca Massetani verfasserin aut Giorgio Murri verfasserin aut Jacopo Facchi verfasserin aut Elga Monaci verfasserin aut Luca Amadio verfasserin aut Davide Neri verfasserin aut In Agronomy MDPI AG, 2012 10(2020), 10, p 1492 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:10 year:2020 number:10, p 1492 https://doi.org/10.3390/agronomy10101492 kostenfrei https://doaj.org/article/405d8510e60e41cb8589427fca3648ed kostenfrei https://www.mdpi.com/2073-4395/10/10/1492 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1492 |
allfieldsGer |
10.3390/agronomy10101492 doi (DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed DE-627 ger DE-627 rakwb eng Md Jebu Mia verfasserin aut Integrated Weed Management in High Density Fruit Orchards 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S Francesca Massetani verfasserin aut Giorgio Murri verfasserin aut Jacopo Facchi verfasserin aut Elga Monaci verfasserin aut Luca Amadio verfasserin aut Davide Neri verfasserin aut In Agronomy MDPI AG, 2012 10(2020), 10, p 1492 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:10 year:2020 number:10, p 1492 https://doi.org/10.3390/agronomy10101492 kostenfrei https://doaj.org/article/405d8510e60e41cb8589427fca3648ed kostenfrei https://www.mdpi.com/2073-4395/10/10/1492 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1492 |
allfieldsSound |
10.3390/agronomy10101492 doi (DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed DE-627 ger DE-627 rakwb eng Md Jebu Mia verfasserin aut Integrated Weed Management in High Density Fruit Orchards 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S Francesca Massetani verfasserin aut Giorgio Murri verfasserin aut Jacopo Facchi verfasserin aut Elga Monaci verfasserin aut Luca Amadio verfasserin aut Davide Neri verfasserin aut In Agronomy MDPI AG, 2012 10(2020), 10, p 1492 (DE-627)658000543 (DE-600)2607043-1 20734395 nnns volume:10 year:2020 number:10, p 1492 https://doi.org/10.3390/agronomy10101492 kostenfrei https://doaj.org/article/405d8510e60e41cb8589427fca3648ed kostenfrei https://www.mdpi.com/2073-4395/10/10/1492 kostenfrei https://doaj.org/toc/2073-4395 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2020 10, p 1492 |
language |
English |
source |
In Agronomy 10(2020), 10, p 1492 volume:10 year:2020 number:10, p 1492 |
sourceStr |
In Agronomy 10(2020), 10, p 1492 volume:10 year:2020 number:10, p 1492 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production Agriculture S |
isfreeaccess_bool |
true |
container_title |
Agronomy |
authorswithroles_txt_mv |
Md Jebu Mia @@aut@@ Francesca Massetani @@aut@@ Giorgio Murri @@aut@@ Jacopo Facchi @@aut@@ Elga Monaci @@aut@@ Luca Amadio @@aut@@ Davide Neri @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
658000543 |
id |
DOAJ057861501 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057861501</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy10101492</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057861501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ405d8510e60e41cb8589427fca3648ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Md Jebu Mia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrated Weed Management in High Density Fruit Orchards</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weed management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated mowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">herbicide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weed biodiversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit production</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesca Massetani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giorgio Murri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacopo Facchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elga Monaci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Amadio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davide Neri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 10, p 1492</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1492</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy10101492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/405d8510e60e41cb8589427fca3648ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/10/10/1492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1492</subfield></datafield></record></collection>
|
author |
Md Jebu Mia |
spellingShingle |
Md Jebu Mia misc weed management misc integrated tillage misc integrated mowing misc herbicide misc weed biodiversity misc fruit production misc Agriculture misc S Integrated Weed Management in High Density Fruit Orchards |
authorStr |
Md Jebu Mia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)658000543 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20734395 |
topic_title |
Integrated Weed Management in High Density Fruit Orchards weed management integrated tillage integrated mowing herbicide weed biodiversity fruit production |
topic |
misc weed management misc integrated tillage misc integrated mowing misc herbicide misc weed biodiversity misc fruit production misc Agriculture misc S |
topic_unstemmed |
misc weed management misc integrated tillage misc integrated mowing misc herbicide misc weed biodiversity misc fruit production misc Agriculture misc S |
topic_browse |
misc weed management misc integrated tillage misc integrated mowing misc herbicide misc weed biodiversity misc fruit production misc Agriculture misc S |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Agronomy |
hierarchy_parent_id |
658000543 |
hierarchy_top_title |
Agronomy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)658000543 (DE-600)2607043-1 |
title |
Integrated Weed Management in High Density Fruit Orchards |
ctrlnum |
(DE-627)DOAJ057861501 (DE-599)DOAJ405d8510e60e41cb8589427fca3648ed |
title_full |
Integrated Weed Management in High Density Fruit Orchards |
author_sort |
Md Jebu Mia |
journal |
Agronomy |
journalStr |
Agronomy |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Md Jebu Mia Francesca Massetani Giorgio Murri Jacopo Facchi Elga Monaci Luca Amadio Davide Neri |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Md Jebu Mia |
doi_str_mv |
10.3390/agronomy10101492 |
author2-role |
verfasserin |
title_sort |
integrated weed management in high density fruit orchards |
title_auth |
Integrated Weed Management in High Density Fruit Orchards |
abstract |
Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. |
abstractGer |
Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. |
abstract_unstemmed |
Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1492 |
title_short |
Integrated Weed Management in High Density Fruit Orchards |
url |
https://doi.org/10.3390/agronomy10101492 https://doaj.org/article/405d8510e60e41cb8589427fca3648ed https://www.mdpi.com/2073-4395/10/10/1492 https://doaj.org/toc/2073-4395 |
remote_bool |
true |
author2 |
Francesca Massetani Giorgio Murri Jacopo Facchi Elga Monaci Luca Amadio Davide Neri |
author2Str |
Francesca Massetani Giorgio Murri Jacopo Facchi Elga Monaci Luca Amadio Davide Neri |
ppnlink |
658000543 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/agronomy10101492 |
up_date |
2024-07-03T14:33:44.414Z |
_version_ |
1803568781112377344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057861501</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412212525.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/agronomy10101492</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057861501</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ405d8510e60e41cb8589427fca3648ed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Md Jebu Mia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrated Weed Management in High Density Fruit Orchards</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the productivity, achieving long-term sustainability and maintaining plant biodiversity have become the pivotal goals in orchard floor management, especially along tree rows. Thus, the paradigm of eradicating weeds in the tree row using chemical herbicide or repeated soil tillage needs to be substituted with more sustainable alternatives. This study was conducted in two commercial apple and peach orchards in Marche region (Italy). Two integrated mechanical approaches, integrated mowing (mower and brush or disc) and integrated tillage (blade weeder and integrated mowing), were compared with the standard herbicide system in a 2-year trial. Weed species diversity, soil coverage, and weed biomass production, including, gas exchange parameters, trunk cross-sectional area (TCSA), fruit yield and quality were measured. Overall, both integrated practices demonstrated approximately 82%, 91% and 113% more species diversity, soil coverage, and weed biomass production, respectively, than herbicide systems. No significant differences were found in terms of tree gas exchange parameters, growth and fruit yield. However, a few fruit quality parameters such as fruit firmness, soluble solids content (SSC) and dry matter content responded positively to the integrated practices. These results suggest that the integrated mechanical approaches of weed management increased orchard biodiversity, and had no adverse effects on tree growth, fruit yield, and quality. The average costs per hectare associated with chemical weed control were 66.5% and 72% lower, respectively, compared to integrated tillage and integrated mowing. However, the government subsidies provided to the orchardists to encourage sustainable management practices were able to offset such additional costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weed management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated tillage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated mowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">herbicide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weed biodiversity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fruit production</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">S</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesca Massetani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giorgio Murri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jacopo Facchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elga Monaci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luca Amadio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Davide Neri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Agronomy</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">10(2020), 10, p 1492</subfield><subfield code="w">(DE-627)658000543</subfield><subfield code="w">(DE-600)2607043-1</subfield><subfield code="x">20734395</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10, p 1492</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/agronomy10101492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/405d8510e60e41cb8589427fca3648ed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4395/10/10/1492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4395</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2020</subfield><subfield code="e">10, p 1492</subfield></datafield></record></collection>
|
score |
7.403063 |