Microprismatic Fresnel Lens for Formation of Uniform Light Circle
Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens th...
Ausführliche Beschreibung
Autor*in: |
M. L. Fu [verfasserIn] E. E. Antonov [verfasserIn] D. Y. Manko [verfasserIn] V. V. Petrov [verfasserIn] K. Z. Rong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Photonics Journal - IEEE, 2015, 13(2021), 3, Seite 8 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:3 ; pages:8 |
Links: |
---|
DOI / URN: |
10.1109/JPHOT.2021.3072538 |
---|
Katalog-ID: |
DOAJ057864152 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057864152 | ||
003 | DE-627 | ||
005 | 20230308221120.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/JPHOT.2021.3072538 |2 doi | |
035 | |a (DE-627)DOAJ057864152 | ||
035 | |a (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1501-1820 | |
050 | 0 | |a QC350-467 | |
100 | 0 | |a M. L. Fu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. | ||
650 | 4 | |a Fresnel lens | |
650 | 4 | |a microrelief structure | |
650 | 4 | |a focal circle | |
650 | 4 | |a light concentrator | |
653 | 0 | |a Applied optics. Photonics | |
653 | 0 | |a Optics. Light | |
700 | 0 | |a E. E. Antonov |e verfasserin |4 aut | |
700 | 0 | |a D. Y. Manko |e verfasserin |4 aut | |
700 | 0 | |a V. V. Petrov |e verfasserin |4 aut | |
700 | 0 | |a K. Z. Rong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Photonics Journal |d IEEE, 2015 |g 13(2021), 3, Seite 8 |w (DE-627)600310272 |w (DE-600)2495610-7 |x 19430655 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:3 |g pages:8 |
856 | 4 | 0 | |u https://doi.org/10.1109/JPHOT.2021.3072538 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9400724/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1943-0655 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 3 |h 8 |
author_variant |
m l f mlf e e a eea d y m dym v v p vvp k z r kzr |
---|---|
matchkey_str |
article:19430655:2021----::irpimtcrselnfromtooui |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1109/JPHOT.2021.3072538 doi (DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 M. L. Fu verfasserin aut Microprismatic Fresnel Lens for Formation of Uniform Light Circle 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light E. E. Antonov verfasserin aut D. Y. Manko verfasserin aut V. V. Petrov verfasserin aut K. Z. Rong verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 3, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:3 pages:8 https://doi.org/10.1109/JPHOT.2021.3072538 kostenfrei https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 kostenfrei https://ieeexplore.ieee.org/document/9400724/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 3 8 |
spelling |
10.1109/JPHOT.2021.3072538 doi (DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 M. L. Fu verfasserin aut Microprismatic Fresnel Lens for Formation of Uniform Light Circle 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light E. E. Antonov verfasserin aut D. Y. Manko verfasserin aut V. V. Petrov verfasserin aut K. Z. Rong verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 3, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:3 pages:8 https://doi.org/10.1109/JPHOT.2021.3072538 kostenfrei https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 kostenfrei https://ieeexplore.ieee.org/document/9400724/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 3 8 |
allfields_unstemmed |
10.1109/JPHOT.2021.3072538 doi (DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 M. L. Fu verfasserin aut Microprismatic Fresnel Lens for Formation of Uniform Light Circle 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light E. E. Antonov verfasserin aut D. Y. Manko verfasserin aut V. V. Petrov verfasserin aut K. Z. Rong verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 3, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:3 pages:8 https://doi.org/10.1109/JPHOT.2021.3072538 kostenfrei https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 kostenfrei https://ieeexplore.ieee.org/document/9400724/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 3 8 |
allfieldsGer |
10.1109/JPHOT.2021.3072538 doi (DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 M. L. Fu verfasserin aut Microprismatic Fresnel Lens for Formation of Uniform Light Circle 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light E. E. Antonov verfasserin aut D. Y. Manko verfasserin aut V. V. Petrov verfasserin aut K. Z. Rong verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 3, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:3 pages:8 https://doi.org/10.1109/JPHOT.2021.3072538 kostenfrei https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 kostenfrei https://ieeexplore.ieee.org/document/9400724/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 3 8 |
allfieldsSound |
10.1109/JPHOT.2021.3072538 doi (DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 DE-627 ger DE-627 rakwb eng TA1501-1820 QC350-467 M. L. Fu verfasserin aut Microprismatic Fresnel Lens for Formation of Uniform Light Circle 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light E. E. Antonov verfasserin aut D. Y. Manko verfasserin aut V. V. Petrov verfasserin aut K. Z. Rong verfasserin aut In IEEE Photonics Journal IEEE, 2015 13(2021), 3, Seite 8 (DE-627)600310272 (DE-600)2495610-7 19430655 nnns volume:13 year:2021 number:3 pages:8 https://doi.org/10.1109/JPHOT.2021.3072538 kostenfrei https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 kostenfrei https://ieeexplore.ieee.org/document/9400724/ kostenfrei https://doaj.org/toc/1943-0655 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 3 8 |
language |
English |
source |
In IEEE Photonics Journal 13(2021), 3, Seite 8 volume:13 year:2021 number:3 pages:8 |
sourceStr |
In IEEE Photonics Journal 13(2021), 3, Seite 8 volume:13 year:2021 number:3 pages:8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fresnel lens microrelief structure focal circle light concentrator Applied optics. Photonics Optics. Light |
isfreeaccess_bool |
true |
container_title |
IEEE Photonics Journal |
authorswithroles_txt_mv |
M. L. Fu @@aut@@ E. E. Antonov @@aut@@ D. Y. Manko @@aut@@ V. V. Petrov @@aut@@ K. Z. Rong @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
600310272 |
id |
DOAJ057864152 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057864152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308221120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2021.3072538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057864152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. L. Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microprismatic Fresnel Lens for Formation of Uniform Light Circle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fresnel lens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microrelief structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">focal circle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light concentrator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. E. Antonov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Y. Manko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Petrov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Z. Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">13(2021), 3, Seite 8</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2021.3072538</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9400724/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
M. L. Fu |
spellingShingle |
M. L. Fu misc TA1501-1820 misc QC350-467 misc Fresnel lens misc microrelief structure misc focal circle misc light concentrator misc Applied optics. Photonics misc Optics. Light Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
authorStr |
M. L. Fu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)600310272 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1501-1820 |
illustrated |
Not Illustrated |
issn |
19430655 |
topic_title |
TA1501-1820 QC350-467 Microprismatic Fresnel Lens for Formation of Uniform Light Circle Fresnel lens microrelief structure focal circle light concentrator |
topic |
misc TA1501-1820 misc QC350-467 misc Fresnel lens misc microrelief structure misc focal circle misc light concentrator misc Applied optics. Photonics misc Optics. Light |
topic_unstemmed |
misc TA1501-1820 misc QC350-467 misc Fresnel lens misc microrelief structure misc focal circle misc light concentrator misc Applied optics. Photonics misc Optics. Light |
topic_browse |
misc TA1501-1820 misc QC350-467 misc Fresnel lens misc microrelief structure misc focal circle misc light concentrator misc Applied optics. Photonics misc Optics. Light |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Photonics Journal |
hierarchy_parent_id |
600310272 |
hierarchy_top_title |
IEEE Photonics Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)600310272 (DE-600)2495610-7 |
title |
Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
ctrlnum |
(DE-627)DOAJ057864152 (DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831 |
title_full |
Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
author_sort |
M. L. Fu |
journal |
IEEE Photonics Journal |
journalStr |
IEEE Photonics Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
8 |
author_browse |
M. L. Fu E. E. Antonov D. Y. Manko V. V. Petrov K. Z. Rong |
container_volume |
13 |
class |
TA1501-1820 QC350-467 |
format_se |
Elektronische Aufsätze |
author-letter |
M. L. Fu |
doi_str_mv |
10.1109/JPHOT.2021.3072538 |
author2-role |
verfasserin |
title_sort |
microprismatic fresnel lens for formation of uniform light circle |
callnumber |
TA1501-1820 |
title_auth |
Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
abstract |
Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. |
abstractGer |
Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. |
abstract_unstemmed |
Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Microprismatic Fresnel Lens for Formation of Uniform Light Circle |
url |
https://doi.org/10.1109/JPHOT.2021.3072538 https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831 https://ieeexplore.ieee.org/document/9400724/ https://doaj.org/toc/1943-0655 |
remote_bool |
true |
author2 |
E. E. Antonov D. Y. Manko V. V. Petrov K. Z. Rong |
author2Str |
E. E. Antonov D. Y. Manko V. V. Petrov K. Z. Rong |
ppnlink |
600310272 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/JPHOT.2021.3072538 |
callnumber-a |
TA1501-1820 |
up_date |
2024-07-03T14:34:38.565Z |
_version_ |
1803568837892767746 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057864152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308221120.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JPHOT.2021.3072538</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057864152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd4751ec5092f4ebab38681dbcd01e831</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1501-1820</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC350-467</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">M. L. Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microprismatic Fresnel Lens for Formation of Uniform Light Circle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Focusing Fresnel lenses are used in many fields of applied optics. These devices are used in optical sensor systems for imaging and optoelectronic integration. The traditional Fresnel lens concentrates the light intensity on the center of the formed image. We present a microprismatic Fresnel lens that transforms a circular incident parallel light beam into a homogeneous light circle with the necessary diameter at a certain distance from the lens. These transforming Fresnel concentrators can be successfully used, for example, in monitoring devices to automatically adjust the output signal from four-quadrant photodetectors. Traditional focusing Fresnel structures are manufactured by photolithographic methods or adjustable direct laser recording with photoresists. These methods enable the formation of stepped optical structures, which have inherent surface defects, resulting in the formation of images that are not high in quality. The proposed specialized Fresnel concentrators can be easily fabricated via the diamond cutting method, which enables the manufacturing of flat working surfaces with exceedingly high optical quality. We also develop a method for simulating the Fresnel transforming lenses with flat conical working facets and calculate the geometric parameters of the circular concentrators. We then apply the simulation results to the diamond cutting method and fabricate the microprismatic light transforming lens samples. These samples are then investigated experimentally with a collimated laser beam. The obtained data agree with the theoretical predictions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fresnel lens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microrelief structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">focal circle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light concentrator</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied optics. Photonics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Optics. Light</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">E. E. Antonov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">D. Y. Manko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Petrov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K. Z. Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Photonics Journal</subfield><subfield code="d">IEEE, 2015</subfield><subfield code="g">13(2021), 3, Seite 8</subfield><subfield code="w">(DE-627)600310272</subfield><subfield code="w">(DE-600)2495610-7</subfield><subfield code="x">19430655</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/JPHOT.2021.3072538</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d4751ec5092f4ebab38681dbcd01e831</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9400724/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1943-0655</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">8</subfield></datafield></record></collection>
|
score |
7.401993 |