A novel method for high accuracy sumoylation site prediction from protein sequences
<p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Curren...
Ausführliche Beschreibung
Autor*in: |
Yuan Jiangang [verfasserIn] Qiang Boqin [verfasserIn] He Yun [verfasserIn] Xu Jialin [verfasserIn] Peng Xiaozhong [verfasserIn] Pan Xian-Ming [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Übergeordnetes Werk: |
In: BMC Bioinformatics - BMC, 2003, 9(2008), 1, p 8 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2008 ; number:1, p 8 |
Links: |
---|
DOI / URN: |
10.1186/1471-2105-9-8 |
---|
Katalog-ID: |
DOAJ057878420 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057878420 | ||
003 | DE-627 | ||
005 | 20230503062006.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2008 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2105-9-8 |2 doi | |
035 | |a (DE-627)DOAJ057878420 | ||
035 | |a (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
050 | 0 | |a QH301-705.5 | |
100 | 0 | |a Yuan Jiangang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A novel method for high accuracy sumoylation site prediction from protein sequences |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Biology (General) | |
700 | 0 | |a Qiang Boqin |e verfasserin |4 aut | |
700 | 0 | |a He Yun |e verfasserin |4 aut | |
700 | 0 | |a Xu Jialin |e verfasserin |4 aut | |
700 | 0 | |a Peng Xiaozhong |e verfasserin |4 aut | |
700 | 0 | |a Pan Xian-Ming |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BMC Bioinformatics |d BMC, 2003 |g 9(2008), 1, p 8 |w (DE-627)326644814 |w (DE-600)2041484-5 |x 14712105 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2008 |g number:1, p 8 |
856 | 4 | 0 | |u https://doi.org/10.1186/1471-2105-9-8 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea |z kostenfrei |
856 | 4 | 0 | |u http://www.biomedcentral.com/1471-2105/9/8 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1471-2105 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2008 |e 1, p 8 |
author_variant |
y j yj q b qb h y hy x j xj p x px p x m pxm |
---|---|
matchkey_str |
article:14712105:2008----::nvlehdohgacrcsmyainierdcinr |
hierarchy_sort_str |
2008 |
callnumber-subject-code |
R |
publishDate |
2008 |
allfields |
10.1186/1471-2105-9-8 doi (DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea DE-627 ger DE-627 rakwb eng R858-859.7 QH301-705.5 Yuan Jiangang verfasserin aut A novel method for high accuracy sumoylation site prediction from protein sequences 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< Computer applications to medicine. Medical informatics Biology (General) Qiang Boqin verfasserin aut He Yun verfasserin aut Xu Jialin verfasserin aut Peng Xiaozhong verfasserin aut Pan Xian-Ming verfasserin aut In BMC Bioinformatics BMC, 2003 9(2008), 1, p 8 (DE-627)326644814 (DE-600)2041484-5 14712105 nnns volume:9 year:2008 number:1, p 8 https://doi.org/10.1186/1471-2105-9-8 kostenfrei https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea kostenfrei http://www.biomedcentral.com/1471-2105/9/8 kostenfrei https://doaj.org/toc/1471-2105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2008 1, p 8 |
spelling |
10.1186/1471-2105-9-8 doi (DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea DE-627 ger DE-627 rakwb eng R858-859.7 QH301-705.5 Yuan Jiangang verfasserin aut A novel method for high accuracy sumoylation site prediction from protein sequences 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< Computer applications to medicine. Medical informatics Biology (General) Qiang Boqin verfasserin aut He Yun verfasserin aut Xu Jialin verfasserin aut Peng Xiaozhong verfasserin aut Pan Xian-Ming verfasserin aut In BMC Bioinformatics BMC, 2003 9(2008), 1, p 8 (DE-627)326644814 (DE-600)2041484-5 14712105 nnns volume:9 year:2008 number:1, p 8 https://doi.org/10.1186/1471-2105-9-8 kostenfrei https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea kostenfrei http://www.biomedcentral.com/1471-2105/9/8 kostenfrei https://doaj.org/toc/1471-2105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2008 1, p 8 |
allfields_unstemmed |
10.1186/1471-2105-9-8 doi (DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea DE-627 ger DE-627 rakwb eng R858-859.7 QH301-705.5 Yuan Jiangang verfasserin aut A novel method for high accuracy sumoylation site prediction from protein sequences 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< Computer applications to medicine. Medical informatics Biology (General) Qiang Boqin verfasserin aut He Yun verfasserin aut Xu Jialin verfasserin aut Peng Xiaozhong verfasserin aut Pan Xian-Ming verfasserin aut In BMC Bioinformatics BMC, 2003 9(2008), 1, p 8 (DE-627)326644814 (DE-600)2041484-5 14712105 nnns volume:9 year:2008 number:1, p 8 https://doi.org/10.1186/1471-2105-9-8 kostenfrei https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea kostenfrei http://www.biomedcentral.com/1471-2105/9/8 kostenfrei https://doaj.org/toc/1471-2105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2008 1, p 8 |
allfieldsGer |
10.1186/1471-2105-9-8 doi (DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea DE-627 ger DE-627 rakwb eng R858-859.7 QH301-705.5 Yuan Jiangang verfasserin aut A novel method for high accuracy sumoylation site prediction from protein sequences 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< Computer applications to medicine. Medical informatics Biology (General) Qiang Boqin verfasserin aut He Yun verfasserin aut Xu Jialin verfasserin aut Peng Xiaozhong verfasserin aut Pan Xian-Ming verfasserin aut In BMC Bioinformatics BMC, 2003 9(2008), 1, p 8 (DE-627)326644814 (DE-600)2041484-5 14712105 nnns volume:9 year:2008 number:1, p 8 https://doi.org/10.1186/1471-2105-9-8 kostenfrei https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea kostenfrei http://www.biomedcentral.com/1471-2105/9/8 kostenfrei https://doaj.org/toc/1471-2105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2008 1, p 8 |
allfieldsSound |
10.1186/1471-2105-9-8 doi (DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea DE-627 ger DE-627 rakwb eng R858-859.7 QH301-705.5 Yuan Jiangang verfasserin aut A novel method for high accuracy sumoylation site prediction from protein sequences 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< Computer applications to medicine. Medical informatics Biology (General) Qiang Boqin verfasserin aut He Yun verfasserin aut Xu Jialin verfasserin aut Peng Xiaozhong verfasserin aut Pan Xian-Ming verfasserin aut In BMC Bioinformatics BMC, 2003 9(2008), 1, p 8 (DE-627)326644814 (DE-600)2041484-5 14712105 nnns volume:9 year:2008 number:1, p 8 https://doi.org/10.1186/1471-2105-9-8 kostenfrei https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea kostenfrei http://www.biomedcentral.com/1471-2105/9/8 kostenfrei https://doaj.org/toc/1471-2105 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2008 1, p 8 |
language |
English |
source |
In BMC Bioinformatics 9(2008), 1, p 8 volume:9 year:2008 number:1, p 8 |
sourceStr |
In BMC Bioinformatics 9(2008), 1, p 8 volume:9 year:2008 number:1, p 8 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics Biology (General) |
isfreeaccess_bool |
true |
container_title |
BMC Bioinformatics |
authorswithroles_txt_mv |
Yuan Jiangang @@aut@@ Qiang Boqin @@aut@@ He Yun @@aut@@ Xu Jialin @@aut@@ Peng Xiaozhong @@aut@@ Pan Xian-Ming @@aut@@ |
publishDateDaySort_date |
2008-01-01T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
DOAJ057878420 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057878420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062006.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-9-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057878420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuan Jiangang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel method for high accuracy sumoylation site prediction from protein sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Boqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Xiaozhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Xian-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Bioinformatics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">9(2008), 1, p 8</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">14712105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1, p 8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2105-9-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2105/9/8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2008</subfield><subfield code="e">1, p 8</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Yuan Jiangang |
spellingShingle |
Yuan Jiangang misc R858-859.7 misc QH301-705.5 misc Computer applications to medicine. Medical informatics misc Biology (General) A novel method for high accuracy sumoylation site prediction from protein sequences |
authorStr |
Yuan Jiangang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
14712105 |
topic_title |
R858-859.7 QH301-705.5 A novel method for high accuracy sumoylation site prediction from protein sequences |
topic |
misc R858-859.7 misc QH301-705.5 misc Computer applications to medicine. Medical informatics misc Biology (General) |
topic_unstemmed |
misc R858-859.7 misc QH301-705.5 misc Computer applications to medicine. Medical informatics misc Biology (General) |
topic_browse |
misc R858-859.7 misc QH301-705.5 misc Computer applications to medicine. Medical informatics misc Biology (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC Bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC Bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
A novel method for high accuracy sumoylation site prediction from protein sequences |
ctrlnum |
(DE-627)DOAJ057878420 (DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea |
title_full |
A novel method for high accuracy sumoylation site prediction from protein sequences |
author_sort |
Yuan Jiangang |
journal |
BMC Bioinformatics |
journalStr |
BMC Bioinformatics |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
author_browse |
Yuan Jiangang Qiang Boqin He Yun Xu Jialin Peng Xiaozhong Pan Xian-Ming |
container_volume |
9 |
class |
R858-859.7 QH301-705.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Yuan Jiangang |
doi_str_mv |
10.1186/1471-2105-9-8 |
author2-role |
verfasserin |
title_sort |
novel method for high accuracy sumoylation site prediction from protein sequences |
callnumber |
R858-859.7 |
title_auth |
A novel method for high accuracy sumoylation site prediction from protein sequences |
abstract |
<p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< |
abstractGer |
<p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< |
abstract_unstemmed |
<p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 8 |
title_short |
A novel method for high accuracy sumoylation site prediction from protein sequences |
url |
https://doi.org/10.1186/1471-2105-9-8 https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea http://www.biomedcentral.com/1471-2105/9/8 https://doaj.org/toc/1471-2105 |
remote_bool |
true |
author2 |
Qiang Boqin He Yun Xu Jialin Peng Xiaozhong Pan Xian-Ming |
author2Str |
Qiang Boqin He Yun Xu Jialin Peng Xiaozhong Pan Xian-Ming |
ppnlink |
326644814 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2105-9-8 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T14:39:53.274Z |
_version_ |
1803569167891169280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057878420</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062006.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-9-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057878420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJef820124f8ab4fa38c4c13f5519dabea</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yuan Jiangang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A novel method for high accuracy sumoylation site prediction from protein sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Background</p< <p<Protein sumoylation is an essential dynamic, reversible post translational modification that plays a role in dozens of cellular activities, especially the regulation of gene expression and the maintenance of genomic stability. Currently, the complexities of sumoylation mechanism can not be perfectly solved by experimental approaches. In this regard, computational approaches might represent a promising method to direct experimental identification of sumoylation sites and shed light on the understanding of the reaction mechanism.</p< <p<Results</p< <p<Here we presented a statistical method for sumoylation site prediction. A 5-fold cross validation test over the experimentally identified sumoylation sites yielded excellent prediction performance with correlation coefficient, specificity, sensitivity and accuracy equal to 0.6364, 97.67%, 73.96% and 96.71% respectively. Additionally, the predictor performance is maintained when high level homologs are removed.</p< <p<Conclusion</p< <p<By using a statistical method, we have developed a new SUMO site prediction method – SUMOpre, which has shown its great accuracy with correlation coefficient, specificity, sensitivity and accuracy.</p<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Boqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Jialin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Xiaozhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pan Xian-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BMC Bioinformatics</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">9(2008), 1, p 8</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">14712105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:1, p 8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/1471-2105-9-8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ef820124f8ab4fa38c4c13f5519dabea</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.biomedcentral.com/1471-2105/9/8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1471-2105</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2008</subfield><subfield code="e">1, p 8</subfield></datafield></record></collection>
|
score |
7.399728 |