Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis
Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we...
Ausführliche Beschreibung
Autor*in: |
Benedikt Franke [verfasserIn] Jan Brüning [verfasserIn] Pavlo Yevtushenko [verfasserIn] Henryk Dreger [verfasserIn] Anna Brand [verfasserIn] Benjamin Juri [verfasserIn] Axel Unbehaun [verfasserIn] Jörg Kempfert [verfasserIn] Simon Sündermann [verfasserIn] Alexander Lembcke [verfasserIn] Natalia Solowjowa [verfasserIn] Sebastian Kelle [verfasserIn] Volkmar Falk [verfasserIn] Titus Kuehne [verfasserIn] Leonid Goubergrits [verfasserIn] Marie Schafstedde [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Cardiovascular Medicine - Frontiers Media S.A., 2015, 8(2021) |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2021 |
Links: |
---|
DOI / URN: |
10.3389/fcvm.2021.706628 |
---|
Katalog-ID: |
DOAJ057972354 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ057972354 | ||
003 | DE-627 | ||
005 | 20230308221953.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fcvm.2021.706628 |2 doi | |
035 | |a (DE-627)DOAJ057972354 | ||
035 | |a (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC666-701 | |
100 | 0 | |a Benedikt Franke |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. | ||
650 | 4 | |a cardiac computed tomography | |
650 | 4 | |a aortic stenosis | |
650 | 4 | |a transvalvular pressure gradient | |
650 | 4 | |a image-based modeling | |
650 | 4 | |a reduced order model | |
653 | 0 | |a Diseases of the circulatory (Cardiovascular) system | |
700 | 0 | |a Jan Brüning |e verfasserin |4 aut | |
700 | 0 | |a Pavlo Yevtushenko |e verfasserin |4 aut | |
700 | 0 | |a Henryk Dreger |e verfasserin |4 aut | |
700 | 0 | |a Henryk Dreger |e verfasserin |4 aut | |
700 | 0 | |a Anna Brand |e verfasserin |4 aut | |
700 | 0 | |a Anna Brand |e verfasserin |4 aut | |
700 | 0 | |a Benjamin Juri |e verfasserin |4 aut | |
700 | 0 | |a Axel Unbehaun |e verfasserin |4 aut | |
700 | 0 | |a Axel Unbehaun |e verfasserin |4 aut | |
700 | 0 | |a Jörg Kempfert |e verfasserin |4 aut | |
700 | 0 | |a Simon Sündermann |e verfasserin |4 aut | |
700 | 0 | |a Simon Sündermann |e verfasserin |4 aut | |
700 | 0 | |a Alexander Lembcke |e verfasserin |4 aut | |
700 | 0 | |a Natalia Solowjowa |e verfasserin |4 aut | |
700 | 0 | |a Sebastian Kelle |e verfasserin |4 aut | |
700 | 0 | |a Volkmar Falk |e verfasserin |4 aut | |
700 | 0 | |a Titus Kuehne |e verfasserin |4 aut | |
700 | 0 | |a Titus Kuehne |e verfasserin |4 aut | |
700 | 0 | |a Titus Kuehne |e verfasserin |4 aut | |
700 | 0 | |a Leonid Goubergrits |e verfasserin |4 aut | |
700 | 0 | |a Leonid Goubergrits |e verfasserin |4 aut | |
700 | 0 | |a Marie Schafstedde |e verfasserin |4 aut | |
700 | 0 | |a Marie Schafstedde |e verfasserin |4 aut | |
700 | 0 | |a Marie Schafstedde |e verfasserin |4 aut | |
700 | 0 | |a Marie Schafstedde |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Cardiovascular Medicine |d Frontiers Media S.A., 2015 |g 8(2021) |w (DE-627)793951607 |w (DE-600)2781496-8 |x 2297055X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.3389/fcvm.2021.706628 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2297-055X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2021 |
author_variant |
b f bf j b jb p y py h d hd h d hd a b ab a b ab b j bj a u au a u au j k jk s s ss s s ss a l al n s ns s k sk v f vf t k tk t k tk t k tk l g lg l g lg m s ms m s ms m s ms m s ms |
---|---|
matchkey_str |
article:2297055X:2021----::optdoorpyaeassmnotasavlrrsuerd |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.3389/fcvm.2021.706628 doi (DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 DE-627 ger DE-627 rakwb eng RC666-701 Benedikt Franke verfasserin aut Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system Jan Brüning verfasserin aut Pavlo Yevtushenko verfasserin aut Henryk Dreger verfasserin aut Henryk Dreger verfasserin aut Anna Brand verfasserin aut Anna Brand verfasserin aut Benjamin Juri verfasserin aut Axel Unbehaun verfasserin aut Axel Unbehaun verfasserin aut Jörg Kempfert verfasserin aut Simon Sündermann verfasserin aut Simon Sündermann verfasserin aut Alexander Lembcke verfasserin aut Natalia Solowjowa verfasserin aut Sebastian Kelle verfasserin aut Volkmar Falk verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Leonid Goubergrits verfasserin aut Leonid Goubergrits verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut In Frontiers in Cardiovascular Medicine Frontiers Media S.A., 2015 8(2021) (DE-627)793951607 (DE-600)2781496-8 2297055X nnns volume:8 year:2021 https://doi.org/10.3389/fcvm.2021.706628 kostenfrei https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 kostenfrei https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full kostenfrei https://doaj.org/toc/2297-055X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 |
spelling |
10.3389/fcvm.2021.706628 doi (DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 DE-627 ger DE-627 rakwb eng RC666-701 Benedikt Franke verfasserin aut Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system Jan Brüning verfasserin aut Pavlo Yevtushenko verfasserin aut Henryk Dreger verfasserin aut Henryk Dreger verfasserin aut Anna Brand verfasserin aut Anna Brand verfasserin aut Benjamin Juri verfasserin aut Axel Unbehaun verfasserin aut Axel Unbehaun verfasserin aut Jörg Kempfert verfasserin aut Simon Sündermann verfasserin aut Simon Sündermann verfasserin aut Alexander Lembcke verfasserin aut Natalia Solowjowa verfasserin aut Sebastian Kelle verfasserin aut Volkmar Falk verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Leonid Goubergrits verfasserin aut Leonid Goubergrits verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut In Frontiers in Cardiovascular Medicine Frontiers Media S.A., 2015 8(2021) (DE-627)793951607 (DE-600)2781496-8 2297055X nnns volume:8 year:2021 https://doi.org/10.3389/fcvm.2021.706628 kostenfrei https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 kostenfrei https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full kostenfrei https://doaj.org/toc/2297-055X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 |
allfields_unstemmed |
10.3389/fcvm.2021.706628 doi (DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 DE-627 ger DE-627 rakwb eng RC666-701 Benedikt Franke verfasserin aut Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system Jan Brüning verfasserin aut Pavlo Yevtushenko verfasserin aut Henryk Dreger verfasserin aut Henryk Dreger verfasserin aut Anna Brand verfasserin aut Anna Brand verfasserin aut Benjamin Juri verfasserin aut Axel Unbehaun verfasserin aut Axel Unbehaun verfasserin aut Jörg Kempfert verfasserin aut Simon Sündermann verfasserin aut Simon Sündermann verfasserin aut Alexander Lembcke verfasserin aut Natalia Solowjowa verfasserin aut Sebastian Kelle verfasserin aut Volkmar Falk verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Leonid Goubergrits verfasserin aut Leonid Goubergrits verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut In Frontiers in Cardiovascular Medicine Frontiers Media S.A., 2015 8(2021) (DE-627)793951607 (DE-600)2781496-8 2297055X nnns volume:8 year:2021 https://doi.org/10.3389/fcvm.2021.706628 kostenfrei https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 kostenfrei https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full kostenfrei https://doaj.org/toc/2297-055X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 |
allfieldsGer |
10.3389/fcvm.2021.706628 doi (DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 DE-627 ger DE-627 rakwb eng RC666-701 Benedikt Franke verfasserin aut Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system Jan Brüning verfasserin aut Pavlo Yevtushenko verfasserin aut Henryk Dreger verfasserin aut Henryk Dreger verfasserin aut Anna Brand verfasserin aut Anna Brand verfasserin aut Benjamin Juri verfasserin aut Axel Unbehaun verfasserin aut Axel Unbehaun verfasserin aut Jörg Kempfert verfasserin aut Simon Sündermann verfasserin aut Simon Sündermann verfasserin aut Alexander Lembcke verfasserin aut Natalia Solowjowa verfasserin aut Sebastian Kelle verfasserin aut Volkmar Falk verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Leonid Goubergrits verfasserin aut Leonid Goubergrits verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut In Frontiers in Cardiovascular Medicine Frontiers Media S.A., 2015 8(2021) (DE-627)793951607 (DE-600)2781496-8 2297055X nnns volume:8 year:2021 https://doi.org/10.3389/fcvm.2021.706628 kostenfrei https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 kostenfrei https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full kostenfrei https://doaj.org/toc/2297-055X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 |
allfieldsSound |
10.3389/fcvm.2021.706628 doi (DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 DE-627 ger DE-627 rakwb eng RC666-701 Benedikt Franke verfasserin aut Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system Jan Brüning verfasserin aut Pavlo Yevtushenko verfasserin aut Henryk Dreger verfasserin aut Henryk Dreger verfasserin aut Anna Brand verfasserin aut Anna Brand verfasserin aut Benjamin Juri verfasserin aut Axel Unbehaun verfasserin aut Axel Unbehaun verfasserin aut Jörg Kempfert verfasserin aut Simon Sündermann verfasserin aut Simon Sündermann verfasserin aut Alexander Lembcke verfasserin aut Natalia Solowjowa verfasserin aut Sebastian Kelle verfasserin aut Volkmar Falk verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Titus Kuehne verfasserin aut Leonid Goubergrits verfasserin aut Leonid Goubergrits verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut Marie Schafstedde verfasserin aut In Frontiers in Cardiovascular Medicine Frontiers Media S.A., 2015 8(2021) (DE-627)793951607 (DE-600)2781496-8 2297055X nnns volume:8 year:2021 https://doi.org/10.3389/fcvm.2021.706628 kostenfrei https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 kostenfrei https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full kostenfrei https://doaj.org/toc/2297-055X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2021 |
language |
English |
source |
In Frontiers in Cardiovascular Medicine 8(2021) volume:8 year:2021 |
sourceStr |
In Frontiers in Cardiovascular Medicine 8(2021) volume:8 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model Diseases of the circulatory (Cardiovascular) system |
isfreeaccess_bool |
true |
container_title |
Frontiers in Cardiovascular Medicine |
authorswithroles_txt_mv |
Benedikt Franke @@aut@@ Jan Brüning @@aut@@ Pavlo Yevtushenko @@aut@@ Henryk Dreger @@aut@@ Anna Brand @@aut@@ Benjamin Juri @@aut@@ Axel Unbehaun @@aut@@ Jörg Kempfert @@aut@@ Simon Sündermann @@aut@@ Alexander Lembcke @@aut@@ Natalia Solowjowa @@aut@@ Sebastian Kelle @@aut@@ Volkmar Falk @@aut@@ Titus Kuehne @@aut@@ Leonid Goubergrits @@aut@@ Marie Schafstedde @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
793951607 |
id |
DOAJ057972354 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057972354</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308221953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcvm.2021.706628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057972354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC666-701</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Benedikt Franke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p &lt; 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiac computed tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aortic stenosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transvalvular pressure gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image-based modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced order model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the circulatory (Cardiovascular) system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Brüning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavlo Yevtushenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henryk Dreger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henryk Dreger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Brand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Brand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Juri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Unbehaun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Unbehaun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jörg Kempfert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Sündermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Sündermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Lembcke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natalia Solowjowa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Kelle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Volkmar Falk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonid Goubergrits</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonid Goubergrits</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Cardiovascular Medicine</subfield><subfield code="d">Frontiers Media S.A., 2015</subfield><subfield code="g">8(2021)</subfield><subfield code="w">(DE-627)793951607</subfield><subfield code="w">(DE-600)2781496-8</subfield><subfield code="x">2297055X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcvm.2021.706628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-055X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Benedikt Franke |
spellingShingle |
Benedikt Franke misc RC666-701 misc cardiac computed tomography misc aortic stenosis misc transvalvular pressure gradient misc image-based modeling misc reduced order model misc Diseases of the circulatory (Cardiovascular) system Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
authorStr |
Benedikt Franke |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)793951607 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC666-701 |
illustrated |
Not Illustrated |
issn |
2297055X |
topic_title |
RC666-701 Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis cardiac computed tomography aortic stenosis transvalvular pressure gradient image-based modeling reduced order model |
topic |
misc RC666-701 misc cardiac computed tomography misc aortic stenosis misc transvalvular pressure gradient misc image-based modeling misc reduced order model misc Diseases of the circulatory (Cardiovascular) system |
topic_unstemmed |
misc RC666-701 misc cardiac computed tomography misc aortic stenosis misc transvalvular pressure gradient misc image-based modeling misc reduced order model misc Diseases of the circulatory (Cardiovascular) system |
topic_browse |
misc RC666-701 misc cardiac computed tomography misc aortic stenosis misc transvalvular pressure gradient misc image-based modeling misc reduced order model misc Diseases of the circulatory (Cardiovascular) system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Cardiovascular Medicine |
hierarchy_parent_id |
793951607 |
hierarchy_top_title |
Frontiers in Cardiovascular Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)793951607 (DE-600)2781496-8 |
title |
Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
ctrlnum |
(DE-627)DOAJ057972354 (DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2 |
title_full |
Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
author_sort |
Benedikt Franke |
journal |
Frontiers in Cardiovascular Medicine |
journalStr |
Frontiers in Cardiovascular Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Benedikt Franke Jan Brüning Pavlo Yevtushenko Henryk Dreger Anna Brand Benjamin Juri Axel Unbehaun Jörg Kempfert Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Leonid Goubergrits Marie Schafstedde |
container_volume |
8 |
class |
RC666-701 |
format_se |
Elektronische Aufsätze |
author-letter |
Benedikt Franke |
doi_str_mv |
10.3389/fcvm.2021.706628 |
author2-role |
verfasserin |
title_sort |
computed tomography-based assessment of transvalvular pressure gradient in aortic stenosis |
callnumber |
RC666-701 |
title_auth |
Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
abstract |
Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. |
abstractGer |
Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. |
abstract_unstemmed |
Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p < 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis |
url |
https://doi.org/10.3389/fcvm.2021.706628 https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2 https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full https://doaj.org/toc/2297-055X |
remote_bool |
true |
author2 |
Jan Brüning Pavlo Yevtushenko Henryk Dreger Anna Brand Benjamin Juri Axel Unbehaun Jörg Kempfert Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Leonid Goubergrits Marie Schafstedde |
author2Str |
Jan Brüning Pavlo Yevtushenko Henryk Dreger Anna Brand Benjamin Juri Axel Unbehaun Jörg Kempfert Simon Sündermann Alexander Lembcke Natalia Solowjowa Sebastian Kelle Volkmar Falk Titus Kuehne Leonid Goubergrits Marie Schafstedde |
ppnlink |
793951607 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fcvm.2021.706628 |
callnumber-a |
RC666-701 |
up_date |
2024-07-03T15:13:55.456Z |
_version_ |
1803571309294125058 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ057972354</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308221953.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fcvm.2021.706628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ057972354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJa1a1c32868294bf186c861f3f1b074d2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC666-701</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Benedikt Franke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computed Tomography-Based Assessment of Transvalvular Pressure Gradient in Aortic Stenosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: In patients with aortic stenosis, computed tomography (CT) provides important information about cardiovascular anatomy for treatment planning but is limited in determining relevant hemodynamic parameters such as the transvalvular pressure gradient (TPG).Purpose: In the present study, we aimed to validate a reduced-order model method for assessing TPG in aortic stenosis using CT data.Methods: TPGCT was calculated using a reduced-order model requiring the patient-specific peak-systolic aortic flow rate (Q) and the aortic valve area (AVA). AVA was determined by segmentation of the aortic valve leaflets, whereas Q was quantified based on volumetric assessment of the left ventricle. For validation, invasively measured TPGcatheter was calculated from pressure measurements in the left ventricle and the ascending aorta. Altogether, 84 data sets of patients with aortic stenosis were used to compare TPGCT against TPGcatheter.Results: TPGcatheter and TPGCT were 50.6 ± 28.0 and 48.0 ± 26 mmHg, respectively (p = 0.56). A Bland–Altman analysis revealed good agreement between both methods with a mean difference in TPG of 2.6 mmHg and a standard deviation of 19.3 mmHg. Both methods showed good correlation with r = 0.72 (p &lt; 0.001).Conclusions: The presented CT-based method allows assessment of TPG in patients with aortic stenosis, extending the current capabilities of cardiac CT for diagnosis and treatment planning.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cardiac computed tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aortic stenosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transvalvular pressure gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image-based modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced order model</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the circulatory (Cardiovascular) system</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jan Brüning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pavlo Yevtushenko</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henryk Dreger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henryk Dreger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Brand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anna Brand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benjamin Juri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Unbehaun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Axel Unbehaun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jörg Kempfert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Sündermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Sündermann</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander Lembcke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natalia Solowjowa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sebastian Kelle</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Volkmar Falk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Titus Kuehne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonid Goubergrits</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonid Goubergrits</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marie Schafstedde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Cardiovascular Medicine</subfield><subfield code="d">Frontiers Media S.A., 2015</subfield><subfield code="g">8(2021)</subfield><subfield code="w">(DE-627)793951607</subfield><subfield code="w">(DE-600)2781496-8</subfield><subfield code="x">2297055X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fcvm.2021.706628</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/a1a1c32868294bf186c861f3f1b074d2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fcvm.2021.706628/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2297-055X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.401106 |