Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts
As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mech...
Ausführliche Beschreibung
Autor*in: |
Bin Liu [verfasserIn] Huaqin Cheng [verfasserIn] Meiying Liu [verfasserIn] Wei Cao [verfasserIn] Kaiyong Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials & Design - Elsevier, 2019, 206(2021), Seite 109786- |
---|---|
Übergeordnetes Werk: |
volume:206 ; year:2021 ; pages:109786- |
Links: |
---|
DOI / URN: |
10.1016/j.matdes.2021.109786 |
---|
Katalog-ID: |
DOAJ058068910 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058068910 | ||
003 | DE-627 | ||
005 | 20230308222610.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matdes.2021.109786 |2 doi | |
035 | |a (DE-627)DOAJ058068910 | ||
035 | |a (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Bin Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. | ||
650 | 4 | |a Porous structures | |
650 | 4 | |a Stress field | |
650 | 4 | |a Anisotropic Centroidal Voronoi Tessellations | |
650 | 4 | |a Closed B-spline curves | |
650 | 4 | |a Stress mapping | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Huaqin Cheng |e verfasserin |4 aut | |
700 | 0 | |a Meiying Liu |e verfasserin |4 aut | |
700 | 0 | |a Wei Cao |e verfasserin |4 aut | |
700 | 0 | |a Kaiyong Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials & Design |d Elsevier, 2019 |g 206(2021), Seite 109786- |w (DE-627)32052857X |w (DE-600)2015480-X |x 18734197 |7 nnns |
773 | 1 | 8 | |g volume:206 |g year:2021 |g pages:109786- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matdes.2021.109786 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S0264127521003397 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0264-1275 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 206 |j 2021 |h 109786- |
author_variant |
b l bl h c hc m l ml w c wc k j kj |
---|---|
matchkey_str |
article:18734197:2021----::dpienstoiprusrcueeinnmdlnfr |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.1016/j.matdes.2021.109786 doi (DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 DE-627 ger DE-627 rakwb eng TA401-492 Bin Liu verfasserin aut Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials Huaqin Cheng verfasserin aut Meiying Liu verfasserin aut Wei Cao verfasserin aut Kaiyong Jiang verfasserin aut In Materials & Design Elsevier, 2019 206(2021), Seite 109786- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:206 year:2021 pages:109786- https://doi.org/10.1016/j.matdes.2021.109786 kostenfrei https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127521003397 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 206 2021 109786- |
spelling |
10.1016/j.matdes.2021.109786 doi (DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 DE-627 ger DE-627 rakwb eng TA401-492 Bin Liu verfasserin aut Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials Huaqin Cheng verfasserin aut Meiying Liu verfasserin aut Wei Cao verfasserin aut Kaiyong Jiang verfasserin aut In Materials & Design Elsevier, 2019 206(2021), Seite 109786- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:206 year:2021 pages:109786- https://doi.org/10.1016/j.matdes.2021.109786 kostenfrei https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127521003397 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 206 2021 109786- |
allfields_unstemmed |
10.1016/j.matdes.2021.109786 doi (DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 DE-627 ger DE-627 rakwb eng TA401-492 Bin Liu verfasserin aut Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials Huaqin Cheng verfasserin aut Meiying Liu verfasserin aut Wei Cao verfasserin aut Kaiyong Jiang verfasserin aut In Materials & Design Elsevier, 2019 206(2021), Seite 109786- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:206 year:2021 pages:109786- https://doi.org/10.1016/j.matdes.2021.109786 kostenfrei https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127521003397 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 206 2021 109786- |
allfieldsGer |
10.1016/j.matdes.2021.109786 doi (DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 DE-627 ger DE-627 rakwb eng TA401-492 Bin Liu verfasserin aut Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials Huaqin Cheng verfasserin aut Meiying Liu verfasserin aut Wei Cao verfasserin aut Kaiyong Jiang verfasserin aut In Materials & Design Elsevier, 2019 206(2021), Seite 109786- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:206 year:2021 pages:109786- https://doi.org/10.1016/j.matdes.2021.109786 kostenfrei https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127521003397 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 206 2021 109786- |
allfieldsSound |
10.1016/j.matdes.2021.109786 doi (DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 DE-627 ger DE-627 rakwb eng TA401-492 Bin Liu verfasserin aut Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials Huaqin Cheng verfasserin aut Meiying Liu verfasserin aut Wei Cao verfasserin aut Kaiyong Jiang verfasserin aut In Materials & Design Elsevier, 2019 206(2021), Seite 109786- (DE-627)32052857X (DE-600)2015480-X 18734197 nnns volume:206 year:2021 pages:109786- https://doi.org/10.1016/j.matdes.2021.109786 kostenfrei https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 kostenfrei http://www.sciencedirect.com/science/article/pii/S0264127521003397 kostenfrei https://doaj.org/toc/0264-1275 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 206 2021 109786- |
language |
English |
source |
In Materials & Design 206(2021), Seite 109786- volume:206 year:2021 pages:109786- |
sourceStr |
In Materials & Design 206(2021), Seite 109786- volume:206 year:2021 pages:109786- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Materials & Design |
authorswithroles_txt_mv |
Bin Liu @@aut@@ Huaqin Cheng @@aut@@ Meiying Liu @@aut@@ Wei Cao @@aut@@ Kaiyong Jiang @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
32052857X |
id |
DOAJ058068910 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058068910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308222610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2021.109786</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058068910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic Centroidal Voronoi Tessellations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed B-spline curves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress mapping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaqin Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meiying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaiyong Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">206(2021), Seite 109786-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109786-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2021.109786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127521003397</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield><subfield code="j">2021</subfield><subfield code="h">109786-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bin Liu |
spellingShingle |
Bin Liu misc TA401-492 misc Porous structures misc Stress field misc Anisotropic Centroidal Voronoi Tessellations misc Closed B-spline curves misc Stress mapping misc Materials of engineering and construction. Mechanics of materials Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
authorStr |
Bin Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32052857X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18734197 |
topic_title |
TA401-492 Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts Porous structures Stress field Anisotropic Centroidal Voronoi Tessellations Closed B-spline curves Stress mapping |
topic |
misc TA401-492 misc Porous structures misc Stress field misc Anisotropic Centroidal Voronoi Tessellations misc Closed B-spline curves misc Stress mapping misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Porous structures misc Stress field misc Anisotropic Centroidal Voronoi Tessellations misc Closed B-spline curves misc Stress mapping misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Porous structures misc Stress field misc Anisotropic Centroidal Voronoi Tessellations misc Closed B-spline curves misc Stress mapping misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials & Design |
hierarchy_parent_id |
32052857X |
hierarchy_top_title |
Materials & Design |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32052857X (DE-600)2015480-X |
title |
Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
ctrlnum |
(DE-627)DOAJ058068910 (DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89 |
title_full |
Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
author_sort |
Bin Liu |
journal |
Materials & Design |
journalStr |
Materials & Design |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
109786 |
author_browse |
Bin Liu Huaqin Cheng Meiying Liu Wei Cao Kaiyong Jiang |
container_volume |
206 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Bin Liu |
doi_str_mv |
10.1016/j.matdes.2021.109786 |
author2-role |
verfasserin |
title_sort |
adaptive anisotropic porous structure design and modeling for 2.5d mechanical parts |
callnumber |
TA401-492 |
title_auth |
Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
abstract |
As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. |
abstractGer |
As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. |
abstract_unstemmed |
As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts |
url |
https://doi.org/10.1016/j.matdes.2021.109786 https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89 http://www.sciencedirect.com/science/article/pii/S0264127521003397 https://doaj.org/toc/0264-1275 |
remote_bool |
true |
author2 |
Huaqin Cheng Meiying Liu Wei Cao Kaiyong Jiang |
author2Str |
Huaqin Cheng Meiying Liu Wei Cao Kaiyong Jiang |
ppnlink |
32052857X |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.matdes.2021.109786 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T15:48:47.840Z |
_version_ |
1803573503294701568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058068910</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308222610.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matdes.2021.109786</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058068910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9162955ae44344fcabbb042a2c92ad89</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive anisotropic porous structure design and modeling for 2.5D mechanical parts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As displaying many advantages including high specific strength, light weight, energy absorption, etc., porous structures have been widely used in aerospace, medical science, engineering and other fields. In this paper, an adaptive anisotropic porous modeling method is proposed for improving the mechanical performance of 2.5D mechanical parts whilst minimizing weight and maximizing product benefits. The method relies on the Anisotropic Centroidal Voronoi Tessellations (ACVTs) by offsetting closed B-spline curves. To enhance adaptability to a given parts, the finite element analysis (FEA) results of stress field is combined with stress-based weighted random sampling strategy to generate ACVTs according to Riemannian metric. A skin frame is established to improve geometrical quality of porous structure and ACVTs is tailored to be adaptive for concave and Non-zero genus. Besides, a parametric model between the stress tensor distribution and the relative density field is formulated, allowing the size, the distribution and the shape of pores to be controlled by stress mapping. Both the FEA results and the experimental data show that the adaptive anisotropic structures have significant advantages in mechanical properties, topological consistency and connectivity. Additionally, an example of wrench is provided to prove the great potential of the adaptive anisotropic structures in engineering applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic Centroidal Voronoi Tessellations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed B-spline curves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress mapping</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huaqin Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Meiying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Cao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kaiyong Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials & Design</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">206(2021), Seite 109786-</subfield><subfield code="w">(DE-627)32052857X</subfield><subfield code="w">(DE-600)2015480-X</subfield><subfield code="x">18734197</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:206</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:109786-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matdes.2021.109786</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9162955ae44344fcabbb042a2c92ad89</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S0264127521003397</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0264-1275</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">206</subfield><subfield code="j">2021</subfield><subfield code="h">109786-</subfield></datafield></record></collection>
|
score |
7.400259 |