Singularities in the flying electromagnetic doughnuts
Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fie...
Ausführliche Beschreibung
Autor*in: |
Zdagkas Apostolos [verfasserIn] Papasimakis Nikitas [verfasserIn] Savinov Vassili [verfasserIn] Dennis Mark R. [verfasserIn] Zheludev Nikolay I. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanophotonics - De Gruyter, 2016, 8(2019), 8, Seite 1379-1385 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2019 ; number:8 ; pages:1379-1385 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1515/nanoph-2019-0101 |
---|
Katalog-ID: |
DOAJ058134867 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058134867 | ||
003 | DE-627 | ||
005 | 20230503031658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/nanoph-2019-0101 |2 doi | |
035 | |a (DE-627)DOAJ058134867 | ||
035 | |a (DE-599)DOAJac969fad099d465eae062a45b82d9f22 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Zdagkas Apostolos |e verfasserin |4 aut | |
245 | 1 | 0 | |a Singularities in the flying electromagnetic doughnuts |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. | ||
650 | 4 | |a toroidal pulse | |
650 | 4 | |a toroidal electrodynamics | |
650 | 4 | |a flying doughnut | |
650 | 4 | |a topology | |
650 | 4 | |a vortex | |
650 | 4 | |a singularities | |
653 | 0 | |a Physics | |
700 | 0 | |a Papasimakis Nikitas |e verfasserin |4 aut | |
700 | 0 | |a Savinov Vassili |e verfasserin |4 aut | |
700 | 0 | |a Dennis Mark R. |e verfasserin |4 aut | |
700 | 0 | |a Zheludev Nikolay I. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanophotonics |d De Gruyter, 2016 |g 8(2019), 8, Seite 1379-1385 |w (DE-627)720169909 |w (DE-600)2674162-3 |x 21928614 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2019 |g number:8 |g pages:1379-1385 |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2019-0101 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/nanoph-2019-0101 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2192-8606 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2192-8614 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2019 |e 8 |h 1379-1385 |
author_variant |
z a za p n pn s v sv d m r dmr z n i zni |
---|---|
matchkey_str |
article:21928614:2019----::iglrteiteliglcrmge |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QC |
publishDate |
2019 |
allfields |
10.1515/nanoph-2019-0101 doi (DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 DE-627 ger DE-627 rakwb eng QC1-999 Zdagkas Apostolos verfasserin aut Singularities in the flying electromagnetic doughnuts 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics Papasimakis Nikitas verfasserin aut Savinov Vassili verfasserin aut Dennis Mark R. verfasserin aut Zheludev Nikolay I. verfasserin aut In Nanophotonics De Gruyter, 2016 8(2019), 8, Seite 1379-1385 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:8 year:2019 number:8 pages:1379-1385 https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 kostenfrei https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/toc/2192-8606 Journal toc kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8 1379-1385 |
spelling |
10.1515/nanoph-2019-0101 doi (DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 DE-627 ger DE-627 rakwb eng QC1-999 Zdagkas Apostolos verfasserin aut Singularities in the flying electromagnetic doughnuts 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics Papasimakis Nikitas verfasserin aut Savinov Vassili verfasserin aut Dennis Mark R. verfasserin aut Zheludev Nikolay I. verfasserin aut In Nanophotonics De Gruyter, 2016 8(2019), 8, Seite 1379-1385 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:8 year:2019 number:8 pages:1379-1385 https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 kostenfrei https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/toc/2192-8606 Journal toc kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8 1379-1385 |
allfields_unstemmed |
10.1515/nanoph-2019-0101 doi (DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 DE-627 ger DE-627 rakwb eng QC1-999 Zdagkas Apostolos verfasserin aut Singularities in the flying electromagnetic doughnuts 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics Papasimakis Nikitas verfasserin aut Savinov Vassili verfasserin aut Dennis Mark R. verfasserin aut Zheludev Nikolay I. verfasserin aut In Nanophotonics De Gruyter, 2016 8(2019), 8, Seite 1379-1385 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:8 year:2019 number:8 pages:1379-1385 https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 kostenfrei https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/toc/2192-8606 Journal toc kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8 1379-1385 |
allfieldsGer |
10.1515/nanoph-2019-0101 doi (DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 DE-627 ger DE-627 rakwb eng QC1-999 Zdagkas Apostolos verfasserin aut Singularities in the flying electromagnetic doughnuts 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics Papasimakis Nikitas verfasserin aut Savinov Vassili verfasserin aut Dennis Mark R. verfasserin aut Zheludev Nikolay I. verfasserin aut In Nanophotonics De Gruyter, 2016 8(2019), 8, Seite 1379-1385 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:8 year:2019 number:8 pages:1379-1385 https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 kostenfrei https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/toc/2192-8606 Journal toc kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8 1379-1385 |
allfieldsSound |
10.1515/nanoph-2019-0101 doi (DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 DE-627 ger DE-627 rakwb eng QC1-999 Zdagkas Apostolos verfasserin aut Singularities in the flying electromagnetic doughnuts 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics Papasimakis Nikitas verfasserin aut Savinov Vassili verfasserin aut Dennis Mark R. verfasserin aut Zheludev Nikolay I. verfasserin aut In Nanophotonics De Gruyter, 2016 8(2019), 8, Seite 1379-1385 (DE-627)720169909 (DE-600)2674162-3 21928614 nnns volume:8 year:2019 number:8 pages:1379-1385 https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 kostenfrei https://doi.org/10.1515/nanoph-2019-0101 kostenfrei https://doaj.org/toc/2192-8606 Journal toc kostenfrei https://doaj.org/toc/2192-8614 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2019 8 1379-1385 |
language |
English |
source |
In Nanophotonics 8(2019), 8, Seite 1379-1385 volume:8 year:2019 number:8 pages:1379-1385 |
sourceStr |
In Nanophotonics 8(2019), 8, Seite 1379-1385 volume:8 year:2019 number:8 pages:1379-1385 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities Physics |
isfreeaccess_bool |
true |
container_title |
Nanophotonics |
authorswithroles_txt_mv |
Zdagkas Apostolos @@aut@@ Papasimakis Nikitas @@aut@@ Savinov Vassili @@aut@@ Dennis Mark R. @@aut@@ Zheludev Nikolay I. @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
720169909 |
id |
DOAJ058134867 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058134867</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2019-0101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058134867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac969fad099d465eae062a45b82d9f22</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zdagkas Apostolos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities in the flying electromagnetic doughnuts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toroidal pulse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toroidal electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying doughnut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singularities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Papasimakis Nikitas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Savinov Vassili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dennis Mark R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheludev Nikolay I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">8(2019), 8, Seite 1379-1385</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1379-1385</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2019-0101</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac969fad099d465eae062a45b82d9f22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2019-0101</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8606</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">8</subfield><subfield code="h">1379-1385</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Zdagkas Apostolos |
spellingShingle |
Zdagkas Apostolos misc QC1-999 misc toroidal pulse misc toroidal electrodynamics misc flying doughnut misc topology misc vortex misc singularities misc Physics Singularities in the flying electromagnetic doughnuts |
authorStr |
Zdagkas Apostolos |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)720169909 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21928614 |
topic_title |
QC1-999 Singularities in the flying electromagnetic doughnuts toroidal pulse toroidal electrodynamics flying doughnut topology vortex singularities |
topic |
misc QC1-999 misc toroidal pulse misc toroidal electrodynamics misc flying doughnut misc topology misc vortex misc singularities misc Physics |
topic_unstemmed |
misc QC1-999 misc toroidal pulse misc toroidal electrodynamics misc flying doughnut misc topology misc vortex misc singularities misc Physics |
topic_browse |
misc QC1-999 misc toroidal pulse misc toroidal electrodynamics misc flying doughnut misc topology misc vortex misc singularities misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanophotonics |
hierarchy_parent_id |
720169909 |
hierarchy_top_title |
Nanophotonics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)720169909 (DE-600)2674162-3 |
title |
Singularities in the flying electromagnetic doughnuts |
ctrlnum |
(DE-627)DOAJ058134867 (DE-599)DOAJac969fad099d465eae062a45b82d9f22 |
title_full |
Singularities in the flying electromagnetic doughnuts |
author_sort |
Zdagkas Apostolos |
journal |
Nanophotonics |
journalStr |
Nanophotonics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1379 |
author_browse |
Zdagkas Apostolos Papasimakis Nikitas Savinov Vassili Dennis Mark R. Zheludev Nikolay I. |
container_volume |
8 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Zdagkas Apostolos |
doi_str_mv |
10.1515/nanoph-2019-0101 |
author2-role |
verfasserin |
title_sort |
singularities in the flying electromagnetic doughnuts |
callnumber |
QC1-999 |
title_auth |
Singularities in the flying electromagnetic doughnuts |
abstract |
Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. |
abstractGer |
Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. |
abstract_unstemmed |
Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Singularities in the flying electromagnetic doughnuts |
url |
https://doi.org/10.1515/nanoph-2019-0101 https://doaj.org/article/ac969fad099d465eae062a45b82d9f22 https://doaj.org/toc/2192-8606 https://doaj.org/toc/2192-8614 |
remote_bool |
true |
author2 |
Papasimakis Nikitas Savinov Vassili Dennis Mark R. Zheludev Nikolay I. |
author2Str |
Papasimakis Nikitas Savinov Vassili Dennis Mark R. Zheludev Nikolay I. |
ppnlink |
720169909 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/nanoph-2019-0101 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T16:11:30.602Z |
_version_ |
1803574932250034176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058134867</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503031658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/nanoph-2019-0101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058134867</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJac969fad099d465eae062a45b82d9f22</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zdagkas Apostolos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities in the flying electromagnetic doughnuts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Flying doughnuts (FDs) are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable toroidal pulses. Here we review their properties and reveal the existence of a complex and robust fine topological structure. In particular, the electric and magnetic fields of the FD pulse vanish across a number of planes, spherical shells and rings, and display a number of point singularities including saddle points and vortices. Moreover, the instantaneous Poynting vector of the field exhibits a large number of singularities, which are often accompanied by extended areas energy backflow.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toroidal pulse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toroidal electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flying doughnut</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singularities</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Papasimakis Nikitas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Savinov Vassili</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dennis Mark R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zheludev Nikolay I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanophotonics</subfield><subfield code="d">De Gruyter, 2016</subfield><subfield code="g">8(2019), 8, Seite 1379-1385</subfield><subfield code="w">(DE-627)720169909</subfield><subfield code="w">(DE-600)2674162-3</subfield><subfield code="x">21928614</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:1379-1385</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2019-0101</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ac969fad099d465eae062a45b82d9f22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/nanoph-2019-0101</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8606</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2192-8614</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2019</subfield><subfield code="e">8</subfield><subfield code="h">1379-1385</subfield></datafield></record></collection>
|
score |
7.4007235 |