Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm
Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Euler...
Ausführliche Beschreibung
Autor*in: |
Cardona M. [verfasserIn] Ramírez J. [verfasserIn] Benavides-Moran A.G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Applied Mechanics and Engineering - Sciendo, 2015, 26(2021), 1, Seite 65-75 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2021 ; number:1 ; pages:65-75 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2478/ijame-2021-0004 |
---|
Katalog-ID: |
DOAJ058147853 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058147853 | ||
003 | DE-627 | ||
005 | 20230308223055.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230227s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/ijame-2021-0004 |2 doi | |
035 | |a (DE-627)DOAJ058147853 | ||
035 | |a (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA349-359 | |
100 | 0 | |a Cardona M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. | ||
650 | 4 | |a endothelization | |
650 | 4 | |a particle manipulation | |
650 | 4 | |a computational fluid dynamics | |
650 | 4 | |a magnetohydrodynamics | |
653 | 0 | |a Mechanics of engineering. Applied mechanics | |
700 | 0 | |a Ramírez J. |e verfasserin |4 aut | |
700 | 0 | |a Benavides-Moran A.G. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Applied Mechanics and Engineering |d Sciendo, 2015 |g 26(2021), 1, Seite 65-75 |w (DE-627)864734018 |w (DE-600)2864256-9 |x 23539003 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2021 |g number:1 |g pages:65-75 |
856 | 4 | 0 | |u https://doi.org/10.2478/ijame-2021-0004 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.2478/ijame-2021-0004 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1734-4492 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2353-9003 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 26 |j 2021 |e 1 |h 65-75 |
author_variant |
c m cm r j rj b m a bma |
---|---|
matchkey_str |
article:23539003:2021----::atrefcecomgeiallbldatcetaeighog |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.2478/ijame-2021-0004 doi (DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 DE-627 ger DE-627 rakwb eng TA349-359 Cardona M. verfasserin aut Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics Ramírez J. verfasserin aut Benavides-Moran A.G. verfasserin aut In International Journal of Applied Mechanics and Engineering Sciendo, 2015 26(2021), 1, Seite 65-75 (DE-627)864734018 (DE-600)2864256-9 23539003 nnns volume:26 year:2021 number:1 pages:65-75 https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 kostenfrei https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/toc/1734-4492 Journal toc kostenfrei https://doaj.org/toc/2353-9003 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 1 65-75 |
spelling |
10.2478/ijame-2021-0004 doi (DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 DE-627 ger DE-627 rakwb eng TA349-359 Cardona M. verfasserin aut Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics Ramírez J. verfasserin aut Benavides-Moran A.G. verfasserin aut In International Journal of Applied Mechanics and Engineering Sciendo, 2015 26(2021), 1, Seite 65-75 (DE-627)864734018 (DE-600)2864256-9 23539003 nnns volume:26 year:2021 number:1 pages:65-75 https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 kostenfrei https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/toc/1734-4492 Journal toc kostenfrei https://doaj.org/toc/2353-9003 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 1 65-75 |
allfields_unstemmed |
10.2478/ijame-2021-0004 doi (DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 DE-627 ger DE-627 rakwb eng TA349-359 Cardona M. verfasserin aut Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics Ramírez J. verfasserin aut Benavides-Moran A.G. verfasserin aut In International Journal of Applied Mechanics and Engineering Sciendo, 2015 26(2021), 1, Seite 65-75 (DE-627)864734018 (DE-600)2864256-9 23539003 nnns volume:26 year:2021 number:1 pages:65-75 https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 kostenfrei https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/toc/1734-4492 Journal toc kostenfrei https://doaj.org/toc/2353-9003 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 1 65-75 |
allfieldsGer |
10.2478/ijame-2021-0004 doi (DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 DE-627 ger DE-627 rakwb eng TA349-359 Cardona M. verfasserin aut Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics Ramírez J. verfasserin aut Benavides-Moran A.G. verfasserin aut In International Journal of Applied Mechanics and Engineering Sciendo, 2015 26(2021), 1, Seite 65-75 (DE-627)864734018 (DE-600)2864256-9 23539003 nnns volume:26 year:2021 number:1 pages:65-75 https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 kostenfrei https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/toc/1734-4492 Journal toc kostenfrei https://doaj.org/toc/2353-9003 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 1 65-75 |
allfieldsSound |
10.2478/ijame-2021-0004 doi (DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 DE-627 ger DE-627 rakwb eng TA349-359 Cardona M. verfasserin aut Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics Ramírez J. verfasserin aut Benavides-Moran A.G. verfasserin aut In International Journal of Applied Mechanics and Engineering Sciendo, 2015 26(2021), 1, Seite 65-75 (DE-627)864734018 (DE-600)2864256-9 23539003 nnns volume:26 year:2021 number:1 pages:65-75 https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 kostenfrei https://doi.org/10.2478/ijame-2021-0004 kostenfrei https://doaj.org/toc/1734-4492 Journal toc kostenfrei https://doaj.org/toc/2353-9003 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 26 2021 1 65-75 |
language |
English |
source |
In International Journal of Applied Mechanics and Engineering 26(2021), 1, Seite 65-75 volume:26 year:2021 number:1 pages:65-75 |
sourceStr |
In International Journal of Applied Mechanics and Engineering 26(2021), 1, Seite 65-75 volume:26 year:2021 number:1 pages:65-75 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
endothelization particle manipulation computational fluid dynamics magnetohydrodynamics Mechanics of engineering. Applied mechanics |
isfreeaccess_bool |
true |
container_title |
International Journal of Applied Mechanics and Engineering |
authorswithroles_txt_mv |
Cardona M. @@aut@@ Ramírez J. @@aut@@ Benavides-Moran A.G. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
864734018 |
id |
DOAJ058147853 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058147853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308223055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ijame-2021-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058147853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA349-359</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cardona M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endothelization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetohydrodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanics of engineering. Applied mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ramírez J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benavides-Moran A.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Applied Mechanics and Engineering</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">26(2021), 1, Seite 65-75</subfield><subfield code="w">(DE-627)864734018</subfield><subfield code="w">(DE-600)2864256-9</subfield><subfield code="x">23539003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:65-75</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ijame-2021-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ijame-2021-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1734-4492</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2353-9003</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">65-75</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Cardona M. |
spellingShingle |
Cardona M. misc TA349-359 misc endothelization misc particle manipulation misc computational fluid dynamics misc magnetohydrodynamics misc Mechanics of engineering. Applied mechanics Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
authorStr |
Cardona M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)864734018 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA349-359 |
illustrated |
Not Illustrated |
issn |
23539003 |
topic_title |
TA349-359 Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm endothelization particle manipulation computational fluid dynamics magnetohydrodynamics |
topic |
misc TA349-359 misc endothelization misc particle manipulation misc computational fluid dynamics misc magnetohydrodynamics misc Mechanics of engineering. Applied mechanics |
topic_unstemmed |
misc TA349-359 misc endothelization misc particle manipulation misc computational fluid dynamics misc magnetohydrodynamics misc Mechanics of engineering. Applied mechanics |
topic_browse |
misc TA349-359 misc endothelization misc particle manipulation misc computational fluid dynamics misc magnetohydrodynamics misc Mechanics of engineering. Applied mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Applied Mechanics and Engineering |
hierarchy_parent_id |
864734018 |
hierarchy_top_title |
International Journal of Applied Mechanics and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)864734018 (DE-600)2864256-9 |
title |
Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
ctrlnum |
(DE-627)DOAJ058147853 (DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1 |
title_full |
Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
author_sort |
Cardona M. |
journal |
International Journal of Applied Mechanics and Engineering |
journalStr |
International Journal of Applied Mechanics and Engineering |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
65 |
author_browse |
Cardona M. Ramírez J. Benavides-Moran A.G. |
container_volume |
26 |
class |
TA349-359 |
format_se |
Elektronische Aufsätze |
author-letter |
Cardona M. |
doi_str_mv |
10.2478/ijame-2021-0004 |
author2-role |
verfasserin |
title_sort |
capture efficiency of magnetically labeled particles traveling through an intracranial aneurysm |
callnumber |
TA349-359 |
title_auth |
Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
abstract |
Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. |
abstractGer |
Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. |
abstract_unstemmed |
Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm |
url |
https://doi.org/10.2478/ijame-2021-0004 https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1 https://doaj.org/toc/1734-4492 https://doaj.org/toc/2353-9003 |
remote_bool |
true |
author2 |
Ramírez J. Benavides-Moran A.G. |
author2Str |
Ramírez J. Benavides-Moran A.G. |
ppnlink |
864734018 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2478/ijame-2021-0004 |
callnumber-a |
TA349-359 |
up_date |
2024-07-03T16:16:41.659Z |
_version_ |
1803575258426376192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058147853</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308223055.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230227s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/ijame-2021-0004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058147853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcde4b3cfb41f4ffbb63f226386eec0a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA349-359</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cardona M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capture Efficiency of Magnetically Labeled Particles Traveling Through an Intracranial Aneurysm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cell manipulation using external magnetic fields has been proposed to accelerate the neck reendothelization of saccular unruptured stented intracranial aneurysms. This work presents a computational fluid dynamics (CFD) model of a Saccular Brain Aneurysm that incorporates a helicoidal stent. An Eulerian-Lagrangian model implemented in ANSYS-Fluent is used to simulate the hemodynamics in the aneurysm. In silico studies have been conducted to describe the incidence of the magnetic field direction, frequency and amplitude on the blood hemodynamics and particle capture efficiency, when an external magnetic field is used to trap magnetically labeled particles traveling through the aneurysm. It is found that the magnetic field direction affects the particle concentration in the target region. Simulation results show that the highest particle capture efficiency is obtained with a 1T magnetic field amplitude in an open bore MRI scanner, when a permanent magnet is used.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">endothelization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">particle manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetohydrodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanics of engineering. Applied mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ramírez J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benavides-Moran A.G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Applied Mechanics and Engineering</subfield><subfield code="d">Sciendo, 2015</subfield><subfield code="g">26(2021), 1, Seite 65-75</subfield><subfield code="w">(DE-627)864734018</subfield><subfield code="w">(DE-600)2864256-9</subfield><subfield code="x">23539003</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:65-75</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ijame-2021-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cde4b3cfb41f4ffbb63f226386eec0a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2478/ijame-2021-0004</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1734-4492</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2353-9003</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">65-75</subfield></datafield></record></collection>
|
score |
7.4008894 |