A geographically weighted deep neural network model for research on the spatial distribution of the down dead wood volume in Liangshui National Nature Reserve (China)

In natural forest ecosystems, there is often abundant down dead wood (DDW) due to wind disasters, which greatly changes the size and structure of forests. Accurately determining the DDW volume (DDWV) is crucial for sustaining forest management, predicting the dynamic changes in forest resources and...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sun Y [verfasserIn]

Ao Z [verfasserIn]

Jia W [verfasserIn]

Chen Y [verfasserIn]

Xu K [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2021

Schlagwörter:

Down Dead Wood Volume (DDWV)

Ordinary Least Squares (OLS) Model

Linear Mixed Model (LMM)

Geographically Weighted Regression (GWR) Model

Deep Neural Network (DNN) Model

Geographically Weighted Deep Neural Network (GWDNN) Model

Übergeordnetes Werk:

In: iForest - Biogeosciences and Forestry - Italian Society of Silviculture and Forest Ecology (SISEF), 2019, 14(2021), 1, Seite 353-361

Übergeordnetes Werk:

volume:14 ; year:2021 ; number:1 ; pages:353-361

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.3832/ifor3705-014

Katalog-ID:

DOAJ058291504

Nicht das Richtige dabei?

Schreiben Sie uns!