Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification
Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhanc...
Ausführliche Beschreibung
Autor*in: |
Yimin Wang [verfasserIn] Zhifeng Xiao [verfasserIn] Lingguo Meng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
fine-grained visual categorization |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 11(2021), 14, p 6533 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:14, p 6533 |
Links: |
---|
DOI / URN: |
10.3390/app11146533 |
---|
Katalog-ID: |
DOAJ058329382 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058329382 | ||
003 | DE-627 | ||
005 | 20240412170432.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app11146533 |2 doi | |
035 | |a (DE-627)DOAJ058329382 | ||
035 | |a (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yimin Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. | ||
650 | 4 | |a fine-grained visual categorization | |
650 | 4 | |a image classification | |
650 | 4 | |a attentive feature representation | |
650 | 4 | |a feature interaction | |
650 | 4 | |a vegetable and fruit recognition | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Zhifeng Xiao |e verfasserin |4 aut | |
700 | 0 | |a Lingguo Meng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 11(2021), 14, p 6533 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:14, p 6533 |
856 | 4 | 0 | |u https://doi.org/10.3390/app11146533 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/11/14/6533 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 14, p 6533 |
author_variant |
y w yw z x zx l m lm |
---|---|
matchkey_str |
article:20763417:2021----::erigtetoaaeneatvfauefrierievgtb |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.3390/app11146533 doi (DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yimin Wang verfasserin aut Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zhifeng Xiao verfasserin aut Lingguo Meng verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 14, p 6533 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:14, p 6533 https://doi.org/10.3390/app11146533 kostenfrei https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 kostenfrei https://www.mdpi.com/2076-3417/11/14/6533 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 14, p 6533 |
spelling |
10.3390/app11146533 doi (DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yimin Wang verfasserin aut Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zhifeng Xiao verfasserin aut Lingguo Meng verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 14, p 6533 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:14, p 6533 https://doi.org/10.3390/app11146533 kostenfrei https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 kostenfrei https://www.mdpi.com/2076-3417/11/14/6533 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 14, p 6533 |
allfields_unstemmed |
10.3390/app11146533 doi (DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yimin Wang verfasserin aut Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zhifeng Xiao verfasserin aut Lingguo Meng verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 14, p 6533 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:14, p 6533 https://doi.org/10.3390/app11146533 kostenfrei https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 kostenfrei https://www.mdpi.com/2076-3417/11/14/6533 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 14, p 6533 |
allfieldsGer |
10.3390/app11146533 doi (DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yimin Wang verfasserin aut Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zhifeng Xiao verfasserin aut Lingguo Meng verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 14, p 6533 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:14, p 6533 https://doi.org/10.3390/app11146533 kostenfrei https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 kostenfrei https://www.mdpi.com/2076-3417/11/14/6533 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 14, p 6533 |
allfieldsSound |
10.3390/app11146533 doi (DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yimin Wang verfasserin aut Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Zhifeng Xiao verfasserin aut Lingguo Meng verfasserin aut In Applied Sciences MDPI AG, 2012 11(2021), 14, p 6533 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:11 year:2021 number:14, p 6533 https://doi.org/10.3390/app11146533 kostenfrei https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 kostenfrei https://www.mdpi.com/2076-3417/11/14/6533 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 14, p 6533 |
language |
English |
source |
In Applied Sciences 11(2021), 14, p 6533 volume:11 year:2021 number:14, p 6533 |
sourceStr |
In Applied Sciences 11(2021), 14, p 6533 volume:11 year:2021 number:14, p 6533 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Yimin Wang @@aut@@ Zhifeng Xiao @@aut@@ Lingguo Meng @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ058329382 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058329382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170432.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11146533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058329382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yimin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fine-grained visual categorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attentive feature representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetable and fruit recognition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhifeng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingguo Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 14, p 6533</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14, p 6533</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11146533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/14/6533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">14, p 6533</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yimin Wang |
spellingShingle |
Yimin Wang misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc fine-grained visual categorization misc image classification misc attentive feature representation misc feature interaction misc vegetable and fruit recognition misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
authorStr |
Yimin Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification fine-grained visual categorization image classification attentive feature representation feature interaction vegetable and fruit recognition |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc fine-grained visual categorization misc image classification misc attentive feature representation misc feature interaction misc vegetable and fruit recognition misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc fine-grained visual categorization misc image classification misc attentive feature representation misc feature interaction misc vegetable and fruit recognition misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc fine-grained visual categorization misc image classification misc attentive feature representation misc feature interaction misc vegetable and fruit recognition misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
ctrlnum |
(DE-627)DOAJ058329382 (DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529 |
title_full |
Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
author_sort |
Yimin Wang |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Yimin Wang Zhifeng Xiao Lingguo Meng |
container_volume |
11 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yimin Wang |
doi_str_mv |
10.3390/app11146533 |
author2-role |
verfasserin |
title_sort |
learning attention-aware interactive features for fine-grained vegetable and fruit classification |
callnumber |
TA1-2040 |
title_auth |
Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
abstract |
Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. |
abstractGer |
Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. |
abstract_unstemmed |
Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
14, p 6533 |
title_short |
Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification |
url |
https://doi.org/10.3390/app11146533 https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529 https://www.mdpi.com/2076-3417/11/14/6533 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Zhifeng Xiao Lingguo Meng |
author2Str |
Zhifeng Xiao Lingguo Meng |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app11146533 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T17:21:35.402Z |
_version_ |
1803579341305544704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058329382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412170432.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app11146533</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058329382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd8e580b4c068466ca4f16a11f5ec9529</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yimin Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Attention-Aware Interactive Features for Fine-Grained Vegetable and Fruit Classification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Vegetable and fruit recognition can be considered as a fine-grained visual categorization (FGVC) task, which is challenging due to the large intraclass variances and small interclass variances. A mainstream direction to address the challenge is to exploit fine-grained local/global features to enhance the feature extraction and representation in the learning pipeline. However, unlike the human visual system, most of the existing FGVC methods only extract features from individual images during training. In contrast, human beings can learn discriminative features by comparing two different images. Inspired by this intuition, a recent FGVC method, named Attentive Pairwise Interaction Network (API-Net), takes as input an image pair for pairwise feature interaction and demonstrates superior performance in several open FGVC data sets. However, the accuracy of API-Net on VegFru, a domain-specific FGVC data set, is lower than expected, potentially due to the lack of spatialwise attention. Following this direction, we propose an FGVC framework named Attention-aware Interactive Features Network (AIF-Net) that refines the API-Net by integrating an attentive feature extractor into the backbone network. Specifically, we employ a region proposal network (RPN) to generate a collection of informative regions and apply a biattention module to learn global and local attentive feature maps, which are fused and fed into an interactive feature learning subnetwork. The novel neural structure is verified through extensive experiments and shows consistent performance improvement in comparison with the SOTA on the VegFru data set, demonstrating its superiority in fine-grained vegetable and fruit recognition. We also discover that a concatenation fusion operation applied in the feature extractor, along with three top-scoring regions suggested by an RPN, can effectively boost the performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fine-grained visual categorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attentive feature representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature interaction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vegetable and fruit recognition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhifeng Xiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lingguo Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 14, p 6533</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14, p 6533</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app11146533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d8e580b4c068466ca4f16a11f5ec9529</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/11/14/6533</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">14, p 6533</subfield></datafield></record></collection>
|
score |
7.4010057 |