Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes
Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage syste...
Ausführliche Beschreibung
Autor*in: |
Ashish Rudola [verfasserIn] Christopher J. Wright [verfasserIn] Jerry Barker [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Energy Research - Frontiers Media S.A., 2014, 10(2022) |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fenrg.2022.852630 |
---|
Katalog-ID: |
DOAJ058344136 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058344136 | ||
003 | DE-627 | ||
005 | 20230308224134.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fenrg.2022.852630 |2 doi | |
035 | |a (DE-627)DOAJ058344136 | ||
035 | |a (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Ashish Rudola |e verfasserin |4 aut | |
245 | 1 | 0 | |a Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. | ||
650 | 4 | |a bipolar battery | |
650 | 4 | |a sodium-ion battery | |
650 | 4 | |a bipolar Na-ion battery | |
650 | 4 | |a high voltage batteries | |
650 | 4 | |a bipolar electrodes | |
650 | 4 | |a beyond 5 V battery | |
653 | 0 | |a General Works | |
653 | 0 | |a A | |
700 | 0 | |a Christopher J. Wright |e verfasserin |4 aut | |
700 | 0 | |a Jerry Barker |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Energy Research |d Frontiers Media S.A., 2014 |g 10(2022) |w (DE-627)768576768 |w (DE-600)2733788-1 |x 2296598X |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fenrg.2022.852630 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2296-598X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |
author_variant |
a r ar c j w cjw j b jb |
---|---|
matchkey_str |
article:2296598X:2022----::xlrtosnohvaiiyfihotgbplraoclss |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.3389/fenrg.2022.852630 doi (DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b DE-627 ger DE-627 rakwb eng Ashish Rudola verfasserin aut Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A Christopher J. Wright verfasserin aut Jerry Barker verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.852630 kostenfrei https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
spelling |
10.3389/fenrg.2022.852630 doi (DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b DE-627 ger DE-627 rakwb eng Ashish Rudola verfasserin aut Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A Christopher J. Wright verfasserin aut Jerry Barker verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.852630 kostenfrei https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfields_unstemmed |
10.3389/fenrg.2022.852630 doi (DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b DE-627 ger DE-627 rakwb eng Ashish Rudola verfasserin aut Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A Christopher J. Wright verfasserin aut Jerry Barker verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.852630 kostenfrei https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsGer |
10.3389/fenrg.2022.852630 doi (DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b DE-627 ger DE-627 rakwb eng Ashish Rudola verfasserin aut Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A Christopher J. Wright verfasserin aut Jerry Barker verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.852630 kostenfrei https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
allfieldsSound |
10.3389/fenrg.2022.852630 doi (DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b DE-627 ger DE-627 rakwb eng Ashish Rudola verfasserin aut Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A Christopher J. Wright verfasserin aut Jerry Barker verfasserin aut In Frontiers in Energy Research Frontiers Media S.A., 2014 10(2022) (DE-627)768576768 (DE-600)2733788-1 2296598X nnns volume:10 year:2022 https://doi.org/10.3389/fenrg.2022.852630 kostenfrei https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b kostenfrei https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full kostenfrei https://doaj.org/toc/2296-598X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 |
language |
English |
source |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
sourceStr |
In Frontiers in Energy Research 10(2022) volume:10 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery General Works A |
isfreeaccess_bool |
true |
container_title |
Frontiers in Energy Research |
authorswithroles_txt_mv |
Ashish Rudola @@aut@@ Christopher J. Wright @@aut@@ Jerry Barker @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
768576768 |
id |
DOAJ058344136 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058344136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308224134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.852630</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058344136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashish Rudola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar Na-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high voltage batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beyond 5 V battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher J. Wright</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jerry Barker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.852630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
author |
Ashish Rudola |
spellingShingle |
Ashish Rudola misc bipolar battery misc sodium-ion battery misc bipolar Na-ion battery misc high voltage batteries misc bipolar electrodes misc beyond 5 V battery misc General Works misc A Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
authorStr |
Ashish Rudola |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)768576768 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2296598X |
topic_title |
Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes bipolar battery sodium-ion battery bipolar Na-ion battery high voltage batteries bipolar electrodes beyond 5 V battery |
topic |
misc bipolar battery misc sodium-ion battery misc bipolar Na-ion battery misc high voltage batteries misc bipolar electrodes misc beyond 5 V battery misc General Works misc A |
topic_unstemmed |
misc bipolar battery misc sodium-ion battery misc bipolar Na-ion battery misc high voltage batteries misc bipolar electrodes misc beyond 5 V battery misc General Works misc A |
topic_browse |
misc bipolar battery misc sodium-ion battery misc bipolar Na-ion battery misc high voltage batteries misc bipolar electrodes misc beyond 5 V battery misc General Works misc A |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Energy Research |
hierarchy_parent_id |
768576768 |
hierarchy_top_title |
Frontiers in Energy Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)768576768 (DE-600)2733788-1 |
title |
Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
ctrlnum |
(DE-627)DOAJ058344136 (DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b |
title_full |
Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
author_sort |
Ashish Rudola |
journal |
Frontiers in Energy Research |
journalStr |
Frontiers in Energy Research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ashish Rudola Christopher J. Wright Jerry Barker |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Ashish Rudola |
doi_str_mv |
10.3389/fenrg.2022.852630 |
author2-role |
verfasserin |
title_sort |
explorations into the viability of high voltage bipolar na-ion cells using liquid electrolytes |
title_auth |
Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
abstract |
Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. |
abstractGer |
Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. |
abstract_unstemmed |
Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes |
url |
https://doi.org/10.3389/fenrg.2022.852630 https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full https://doaj.org/toc/2296-598X |
remote_bool |
true |
author2 |
Christopher J. Wright Jerry Barker |
author2Str |
Christopher J. Wright Jerry Barker |
ppnlink |
768576768 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fenrg.2022.852630 |
up_date |
2024-07-03T17:26:43.314Z |
_version_ |
1803579664177823745 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058344136</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308224134.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fenrg.2022.852630</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058344136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7e1a791e93304f0f815a806ea574ce4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ashish Rudola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explorations Into the Viability of High Voltage Bipolar Na-Ion Cells Using Liquid Electrolytes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bipolar electrodes can be defined as electrodes where cathode and anode active materials exist on either side of a shared current collector substrate. The resultant rechargeable bipolar batteries, using series-connected electrochemical cells within one sealed enclosure, can enable high-voltage systems irrespective of the voltage of the cathode//anode couple used. The sodium-ion battery, being well-suited for the bipolar concept, is now rapidly being commercialized and has higher energy densities than most rechargeable battery technologies. However, bipolar sodium-ion batteries using commercially-feasible liquid electrolytes and manufacturing methodologies, have not been demonstrated at scale yet. Herein, we explore the design methodology needed to enable commercial realization of such bipolar sodium-ion batteries, using liquid electrolytes and different types of cathode//anode couples. We show good cycling stabilities over 200 cycles and potential for voltages beyond 6 V for bipolar Na-ion pouch cells. We also introduce a scalable method to fabricate nSmP Na-ion/mixed-chemistry bipolar cells (n cells in series; m cells in parallel) in a single, sealed cell. Our results point to realistic promise for high voltage and sustainable bipolar sodium-ion batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sodium-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar Na-ion battery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high voltage batteries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bipolar electrodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">beyond 5 V battery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General Works</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">A</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher J. Wright</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jerry Barker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Energy Research</subfield><subfield code="d">Frontiers Media S.A., 2014</subfield><subfield code="g">10(2022)</subfield><subfield code="w">(DE-627)768576768</subfield><subfield code="w">(DE-600)2733788-1</subfield><subfield code="x">2296598X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fenrg.2022.852630</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7e1a791e93304f0f815a806ea574ce4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fenrg.2022.852630/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2296-598X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.3997297 |