Galactic cosmic ray anisotropy modelling
We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle ar...
Ausführliche Beschreibung
Autor*in: |
Peregoudov D.V. [verfasserIn] Soloviev A.A. [verfasserIn] Yashin I.I. [verfasserIn] Shutenko V.V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Solar-Terrestrial Physics - INFRA-M, 2018, 6(2020), 1, Seite 29-34 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2020 ; number:1 ; pages:29-34 |
Links: |
---|
Katalog-ID: |
DOAJ058758917 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058758917 | ||
003 | DE-627 | ||
005 | 20230308230058.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ058758917 | ||
035 | |a (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
100 | 0 | |a Peregoudov D.V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Galactic cosmic ray anisotropy modelling |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. | ||
650 | 4 | |a cosmic rays | |
650 | 4 | |a coronal mass ejections | |
650 | 4 | |a angular distribution | |
650 | 4 | |a anisotropy | |
653 | 0 | |a Astrophysics | |
700 | 0 | |a Soloviev A.A. |e verfasserin |4 aut | |
700 | 0 | |a Yashin I.I. |e verfasserin |4 aut | |
700 | 0 | |a Shutenko V.V. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Solar-Terrestrial Physics |d INFRA-M, 2018 |g 6(2020), 1, Seite 29-34 |w (DE-627)1760623873 |x 25000535 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2020 |g number:1 |g pages:29-34 |
856 | 4 | 0 | |u https://doi.org/10.12737/stp-61202003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 |z kostenfrei |
856 | 4 | 0 | |u https://naukaru.ru/en/nauka/article/36814/view |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2500-0535 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 6 |j 2020 |e 1 |h 29-34 |
author_variant |
p d pd s a sa y i yi s v sv |
---|---|
matchkey_str |
article:25000535:2020----::aatcomcaaiorp |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QB |
publishDate |
2020 |
allfields |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 DE-627 ger DE-627 rakwb eng QB460-466 Peregoudov D.V. verfasserin aut Galactic cosmic ray anisotropy modelling 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics Soloviev A.A. verfasserin aut Yashin I.I. verfasserin aut Shutenko V.V. verfasserin aut In Solar-Terrestrial Physics INFRA-M, 2018 6(2020), 1, Seite 29-34 (DE-627)1760623873 25000535 nnns volume:6 year:2020 number:1 pages:29-34 https://doi.org/10.12737/stp-61202003 kostenfrei https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 kostenfrei https://naukaru.ru/en/nauka/article/36814/view kostenfrei https://doaj.org/toc/2500-0535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2020 1 29-34 |
spelling |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 DE-627 ger DE-627 rakwb eng QB460-466 Peregoudov D.V. verfasserin aut Galactic cosmic ray anisotropy modelling 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics Soloviev A.A. verfasserin aut Yashin I.I. verfasserin aut Shutenko V.V. verfasserin aut In Solar-Terrestrial Physics INFRA-M, 2018 6(2020), 1, Seite 29-34 (DE-627)1760623873 25000535 nnns volume:6 year:2020 number:1 pages:29-34 https://doi.org/10.12737/stp-61202003 kostenfrei https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 kostenfrei https://naukaru.ru/en/nauka/article/36814/view kostenfrei https://doaj.org/toc/2500-0535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2020 1 29-34 |
allfields_unstemmed |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 DE-627 ger DE-627 rakwb eng QB460-466 Peregoudov D.V. verfasserin aut Galactic cosmic ray anisotropy modelling 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics Soloviev A.A. verfasserin aut Yashin I.I. verfasserin aut Shutenko V.V. verfasserin aut In Solar-Terrestrial Physics INFRA-M, 2018 6(2020), 1, Seite 29-34 (DE-627)1760623873 25000535 nnns volume:6 year:2020 number:1 pages:29-34 https://doi.org/10.12737/stp-61202003 kostenfrei https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 kostenfrei https://naukaru.ru/en/nauka/article/36814/view kostenfrei https://doaj.org/toc/2500-0535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2020 1 29-34 |
allfieldsGer |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 DE-627 ger DE-627 rakwb eng QB460-466 Peregoudov D.V. verfasserin aut Galactic cosmic ray anisotropy modelling 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics Soloviev A.A. verfasserin aut Yashin I.I. verfasserin aut Shutenko V.V. verfasserin aut In Solar-Terrestrial Physics INFRA-M, 2018 6(2020), 1, Seite 29-34 (DE-627)1760623873 25000535 nnns volume:6 year:2020 number:1 pages:29-34 https://doi.org/10.12737/stp-61202003 kostenfrei https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 kostenfrei https://naukaru.ru/en/nauka/article/36814/view kostenfrei https://doaj.org/toc/2500-0535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2020 1 29-34 |
allfieldsSound |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 DE-627 ger DE-627 rakwb eng QB460-466 Peregoudov D.V. verfasserin aut Galactic cosmic ray anisotropy modelling 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics Soloviev A.A. verfasserin aut Yashin I.I. verfasserin aut Shutenko V.V. verfasserin aut In Solar-Terrestrial Physics INFRA-M, 2018 6(2020), 1, Seite 29-34 (DE-627)1760623873 25000535 nnns volume:6 year:2020 number:1 pages:29-34 https://doi.org/10.12737/stp-61202003 kostenfrei https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 kostenfrei https://naukaru.ru/en/nauka/article/36814/view kostenfrei https://doaj.org/toc/2500-0535 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 6 2020 1 29-34 |
language |
English |
source |
In Solar-Terrestrial Physics 6(2020), 1, Seite 29-34 volume:6 year:2020 number:1 pages:29-34 |
sourceStr |
In Solar-Terrestrial Physics 6(2020), 1, Seite 29-34 volume:6 year:2020 number:1 pages:29-34 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cosmic rays coronal mass ejections angular distribution anisotropy Astrophysics |
isfreeaccess_bool |
true |
container_title |
Solar-Terrestrial Physics |
authorswithroles_txt_mv |
Peregoudov D.V. @@aut@@ Soloviev A.A. @@aut@@ Yashin I.I. @@aut@@ Shutenko V.V. @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
1760623873 |
id |
DOAJ058758917 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058758917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058758917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peregoudov D.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Galactic cosmic ray anisotropy modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic rays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronal mass ejections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angular distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anisotropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soloviev A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yashin I.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shutenko V.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Solar-Terrestrial Physics</subfield><subfield code="d">INFRA-M, 2018</subfield><subfield code="g">6(2020), 1, Seite 29-34</subfield><subfield code="w">(DE-627)1760623873</subfield><subfield code="x">25000535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29-34</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.12737/stp-61202003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://naukaru.ru/en/nauka/article/36814/view</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2500-0535</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">29-34</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Peregoudov D.V. |
spellingShingle |
Peregoudov D.V. misc QB460-466 misc cosmic rays misc coronal mass ejections misc angular distribution misc anisotropy misc Astrophysics Galactic cosmic ray anisotropy modelling |
authorStr |
Peregoudov D.V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760623873 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
25000535 |
topic_title |
QB460-466 Galactic cosmic ray anisotropy modelling cosmic rays coronal mass ejections angular distribution anisotropy |
topic |
misc QB460-466 misc cosmic rays misc coronal mass ejections misc angular distribution misc anisotropy misc Astrophysics |
topic_unstemmed |
misc QB460-466 misc cosmic rays misc coronal mass ejections misc angular distribution misc anisotropy misc Astrophysics |
topic_browse |
misc QB460-466 misc cosmic rays misc coronal mass ejections misc angular distribution misc anisotropy misc Astrophysics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar-Terrestrial Physics |
hierarchy_parent_id |
1760623873 |
hierarchy_top_title |
Solar-Terrestrial Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760623873 |
title |
Galactic cosmic ray anisotropy modelling |
ctrlnum |
(DE-627)DOAJ058758917 (DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433 |
title_full |
Galactic cosmic ray anisotropy modelling |
author_sort |
Peregoudov D.V. |
journal |
Solar-Terrestrial Physics |
journalStr |
Solar-Terrestrial Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
29 |
author_browse |
Peregoudov D.V. Soloviev A.A. Yashin I.I. Shutenko V.V. |
container_volume |
6 |
class |
QB460-466 |
format_se |
Elektronische Aufsätze |
author-letter |
Peregoudov D.V. |
author2-role |
verfasserin |
title_sort |
galactic cosmic ray anisotropy modelling |
callnumber |
QB460-466 |
title_auth |
Galactic cosmic ray anisotropy modelling |
abstract |
We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. |
abstractGer |
We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. |
abstract_unstemmed |
We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
1 |
title_short |
Galactic cosmic ray anisotropy modelling |
url |
https://doi.org/10.12737/stp-61202003 https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433 https://naukaru.ru/en/nauka/article/36814/view https://doaj.org/toc/2500-0535 |
remote_bool |
true |
author2 |
Soloviev A.A. Yashin I.I. Shutenko V.V. |
author2Str |
Soloviev A.A. Yashin I.I. Shutenko V.V. |
ppnlink |
1760623873 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T19:54:55.644Z |
_version_ |
1803588988458500096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058758917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230058.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058758917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5c52e3868e6a4b0a867c207cc055b433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Peregoudov D.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Galactic cosmic ray anisotropy modelling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We calculate the angular distribution of cosmic rays at a given point of the heliosphere under the assumption that the incoming flux from outer space is isotropic. The static magnetic field is shown to cause no anisotropy provided that the observation point is situated out of the trapped particle area. We consider a coronal ejection model in the form of a static cylinder with an axial homogeneous magnetic field inside. We calculate angular distribution samples in the trapped particle area (inside the cylinder) and show that there is a certain cone of directions with a reduced flux. For the same model with the moving cylinder, the angular distribution samples are calculated for different positions of the observation point outside the cylinder. Anisotropy of order of the ejection to light velocity ratio is shown to arise. The calculated samples are in qualitative agreement with URAGAN muon hodoscope data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cosmic rays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coronal mass ejections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">angular distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anisotropy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Soloviev A.A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yashin I.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shutenko V.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Solar-Terrestrial Physics</subfield><subfield code="d">INFRA-M, 2018</subfield><subfield code="g">6(2020), 1, Seite 29-34</subfield><subfield code="w">(DE-627)1760623873</subfield><subfield code="x">25000535</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:29-34</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.12737/stp-61202003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5c52e3868e6a4b0a867c207cc055b433</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://naukaru.ru/en/nauka/article/36814/view</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2500-0535</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="h">29-34</subfield></datafield></record></collection>
|
score |
7.400981 |