The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms
The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is nece...
Ausführliche Beschreibung
Autor*in: |
Fu Ming [verfasserIn] Lifang Wang [verfasserIn] Jian Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 169585-169593 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:169585-169593 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3022807 |
---|
Katalog-ID: |
DOAJ058799109 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058799109 | ||
003 | DE-627 | ||
005 | 20230308230253.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3022807 |2 doi | |
035 | |a (DE-627)DOAJ058799109 | ||
035 | |a (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Fu Ming |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. | ||
650 | 4 | |a Pythagorean fuzzy sets | |
650 | 4 | |a multi-criteria decision making problem | |
650 | 4 | |a precise poverty alleviation | |
650 | 4 | |a fuzzy decision making | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lifang Wang |e verfasserin |4 aut | |
700 | 0 | |a Jian Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 169585-169593 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:169585-169593 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3022807 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9187909/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 169585-169593 |
author_variant |
f m fm l w lw j z jz |
---|---|
matchkey_str |
article:21693536:2020----::hietfctoopvryleitotresaeoteutpeyrd |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3022807 doi (DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Ming verfasserin aut The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering Lifang Wang verfasserin aut Jian Zhou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169585-169593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169585-169593 https://doi.org/10.1109/ACCESS.2020.3022807 kostenfrei https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 kostenfrei https://ieeexplore.ieee.org/document/9187909/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169585-169593 |
spelling |
10.1109/ACCESS.2020.3022807 doi (DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Ming verfasserin aut The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering Lifang Wang verfasserin aut Jian Zhou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169585-169593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169585-169593 https://doi.org/10.1109/ACCESS.2020.3022807 kostenfrei https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 kostenfrei https://ieeexplore.ieee.org/document/9187909/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169585-169593 |
allfields_unstemmed |
10.1109/ACCESS.2020.3022807 doi (DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Ming verfasserin aut The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering Lifang Wang verfasserin aut Jian Zhou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169585-169593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169585-169593 https://doi.org/10.1109/ACCESS.2020.3022807 kostenfrei https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 kostenfrei https://ieeexplore.ieee.org/document/9187909/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169585-169593 |
allfieldsGer |
10.1109/ACCESS.2020.3022807 doi (DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Ming verfasserin aut The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering Lifang Wang verfasserin aut Jian Zhou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169585-169593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169585-169593 https://doi.org/10.1109/ACCESS.2020.3022807 kostenfrei https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 kostenfrei https://ieeexplore.ieee.org/document/9187909/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169585-169593 |
allfieldsSound |
10.1109/ACCESS.2020.3022807 doi (DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Ming verfasserin aut The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering Lifang Wang verfasserin aut Jian Zhou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 169585-169593 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:169585-169593 https://doi.org/10.1109/ACCESS.2020.3022807 kostenfrei https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 kostenfrei https://ieeexplore.ieee.org/document/9187909/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 169585-169593 |
language |
English |
source |
In IEEE Access 8(2020), Seite 169585-169593 volume:8 year:2020 pages:169585-169593 |
sourceStr |
In IEEE Access 8(2020), Seite 169585-169593 volume:8 year:2020 pages:169585-169593 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Fu Ming @@aut@@ Lifang Wang @@aut@@ Jian Zhou @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ058799109 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058799109</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230253.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3022807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058799109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fu Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-criteria decision making problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precise poverty alleviation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy decision making</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 169585-169593</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:169585-169593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3022807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9187909/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">169585-169593</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Fu Ming |
spellingShingle |
Fu Ming misc TK1-9971 misc Pythagorean fuzzy sets misc multi-criteria decision making problem misc precise poverty alleviation misc fuzzy decision making misc Electrical engineering. Electronics. Nuclear engineering The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
authorStr |
Fu Ming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms Pythagorean fuzzy sets multi-criteria decision making problem precise poverty alleviation fuzzy decision making |
topic |
misc TK1-9971 misc Pythagorean fuzzy sets misc multi-criteria decision making problem misc precise poverty alleviation misc fuzzy decision making misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Pythagorean fuzzy sets misc multi-criteria decision making problem misc precise poverty alleviation misc fuzzy decision making misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Pythagorean fuzzy sets misc multi-criteria decision making problem misc precise poverty alleviation misc fuzzy decision making misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
ctrlnum |
(DE-627)DOAJ058799109 (DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98 |
title_full |
The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
author_sort |
Fu Ming |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
169585 |
author_browse |
Fu Ming Lifang Wang Jian Zhou |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Fu Ming |
doi_str_mv |
10.1109/ACCESS.2020.3022807 |
author2-role |
verfasserin |
title_sort |
identification of poverty alleviation targets based on the multiple hybrid decision-making algorithms |
callnumber |
TK1-9971 |
title_auth |
The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
abstract |
The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. |
abstractGer |
The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. |
abstract_unstemmed |
The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms |
url |
https://doi.org/10.1109/ACCESS.2020.3022807 https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98 https://ieeexplore.ieee.org/document/9187909/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lifang Wang Jian Zhou |
author2Str |
Lifang Wang Jian Zhou |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3022807 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:08:40.252Z |
_version_ |
1803589853133144064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058799109</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230253.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3022807</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058799109</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfcd1849ebc434ee7a2042536a98bee98</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fu Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Identification of Poverty Alleviation Targets Based on the Multiple Hybrid Decision-Making Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The poverty alleviation problem as one of the social evaluation applications has long been a major focus of social problems. As the basis and starting step of the poverty alleviation project, it is crucial to accurately identify the targets of poverty alleviation. Therefore, first of all, it is necessary to establish a scientific and reasonable indicators system and then evaluate all the indicator values respectively. However, in the process of data evaluation, we found that it is often hard to decide the unique valuation for some indicators because of the hesitation among different possible valuations in the mind. Different from traditional algorithms only using a single indicator valuation, the paper uses Pythagorean fuzzy sets (PFSs) to keep possible valuations from the positive and negative aspects and it can overcome the hesitation in the data evaluation process to a certain extent. The paper considers the problem of identifying the poverty alleviation targets as a multi-criteria decision making (MCDM) problem and then proposes a modified algorithm to solve the problem on the basis of several traditional algorithms. The algorithm work well and can obtain the maximum group utility and the minimum individual regret at the same time in the following experiments. The optimal poverty alleviation targets have been found and the poverty ranking list has also been obtained through the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean fuzzy sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-criteria decision making problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precise poverty alleviation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy decision making</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lifang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 169585-169593</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:169585-169593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3022807</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fcd1849ebc434ee7a2042536a98bee98</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9187909/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">169585-169593</subfield></datafield></record></collection>
|
score |
7.401745 |