Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks
By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with differ...
Ausführliche Beschreibung
Autor*in: |
Haifeng Lin [verfasserIn] Lin Du [verfasserIn] Yunfei Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 109000-109008 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:109000-109008 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.3001006 |
---|
Katalog-ID: |
DOAJ058826769 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058826769 | ||
003 | DE-627 | ||
005 | 20230308230423.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.3001006 |2 doi | |
035 | |a (DE-627)DOAJ058826769 | ||
035 | |a (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Haifeng Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. | ||
650 | 4 | |a Cooperative spectrum sensing | |
650 | 4 | |a soft decision | |
650 | 4 | |a entropy weight method | |
650 | 4 | |a cognitive radio sensor networks | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Lin Du |e verfasserin |4 aut | |
700 | 0 | |a Yunfei Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 109000-109008 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:109000-109008 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.3001006 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9112203/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 109000-109008 |
author_variant |
h l hl l d ld y l yl |
---|---|
matchkey_str |
article:21693536:2020----::oteiinoprtvsetusnigihnrpwihmtofron |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.3001006 doi (DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 DE-627 ger DE-627 rakwb eng TK1-9971 Haifeng Lin verfasserin aut Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering Lin Du verfasserin aut Yunfei Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 109000-109008 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:109000-109008 https://doi.org/10.1109/ACCESS.2020.3001006 kostenfrei https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 kostenfrei https://ieeexplore.ieee.org/document/9112203/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 109000-109008 |
spelling |
10.1109/ACCESS.2020.3001006 doi (DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 DE-627 ger DE-627 rakwb eng TK1-9971 Haifeng Lin verfasserin aut Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering Lin Du verfasserin aut Yunfei Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 109000-109008 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:109000-109008 https://doi.org/10.1109/ACCESS.2020.3001006 kostenfrei https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 kostenfrei https://ieeexplore.ieee.org/document/9112203/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 109000-109008 |
allfields_unstemmed |
10.1109/ACCESS.2020.3001006 doi (DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 DE-627 ger DE-627 rakwb eng TK1-9971 Haifeng Lin verfasserin aut Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering Lin Du verfasserin aut Yunfei Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 109000-109008 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:109000-109008 https://doi.org/10.1109/ACCESS.2020.3001006 kostenfrei https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 kostenfrei https://ieeexplore.ieee.org/document/9112203/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 109000-109008 |
allfieldsGer |
10.1109/ACCESS.2020.3001006 doi (DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 DE-627 ger DE-627 rakwb eng TK1-9971 Haifeng Lin verfasserin aut Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering Lin Du verfasserin aut Yunfei Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 109000-109008 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:109000-109008 https://doi.org/10.1109/ACCESS.2020.3001006 kostenfrei https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 kostenfrei https://ieeexplore.ieee.org/document/9112203/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 109000-109008 |
allfieldsSound |
10.1109/ACCESS.2020.3001006 doi (DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 DE-627 ger DE-627 rakwb eng TK1-9971 Haifeng Lin verfasserin aut Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering Lin Du verfasserin aut Yunfei Liu verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 109000-109008 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:109000-109008 https://doi.org/10.1109/ACCESS.2020.3001006 kostenfrei https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 kostenfrei https://ieeexplore.ieee.org/document/9112203/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 109000-109008 |
language |
English |
source |
In IEEE Access 8(2020), Seite 109000-109008 volume:8 year:2020 pages:109000-109008 |
sourceStr |
In IEEE Access 8(2020), Seite 109000-109008 volume:8 year:2020 pages:109000-109008 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Haifeng Lin @@aut@@ Lin Du @@aut@@ Yunfei Liu @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ058826769 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058826769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3001006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058826769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haifeng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperative spectrum sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soft decision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy weight method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio sensor networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunfei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 109000-109008</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:109000-109008</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3001006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9112203/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">109000-109008</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Haifeng Lin |
spellingShingle |
Haifeng Lin misc TK1-9971 misc Cooperative spectrum sensing misc soft decision misc entropy weight method misc cognitive radio sensor networks misc Electrical engineering. Electronics. Nuclear engineering Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
authorStr |
Haifeng Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks Cooperative spectrum sensing soft decision entropy weight method cognitive radio sensor networks |
topic |
misc TK1-9971 misc Cooperative spectrum sensing misc soft decision misc entropy weight method misc cognitive radio sensor networks misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Cooperative spectrum sensing misc soft decision misc entropy weight method misc cognitive radio sensor networks misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Cooperative spectrum sensing misc soft decision misc entropy weight method misc cognitive radio sensor networks misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
ctrlnum |
(DE-627)DOAJ058826769 (DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219 |
title_full |
Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
author_sort |
Haifeng Lin |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
109000 |
author_browse |
Haifeng Lin Lin Du Yunfei Liu |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Haifeng Lin |
doi_str_mv |
10.1109/ACCESS.2020.3001006 |
author2-role |
verfasserin |
title_sort |
soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks |
callnumber |
TK1-9971 |
title_auth |
Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
abstract |
By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. |
abstractGer |
By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. |
abstract_unstemmed |
By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks |
url |
https://doi.org/10.1109/ACCESS.2020.3001006 https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219 https://ieeexplore.ieee.org/document/9112203/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Lin Du Yunfei Liu |
author2Str |
Lin Du Yunfei Liu |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.3001006 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:17:22.872Z |
_version_ |
1803590401136787456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058826769</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308230423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.3001006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058826769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbb53ab4b80d84cf5aaf077d802c2c219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haifeng Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soft Decision Cooperative Spectrum Sensing With Entropy Weight Method for Cognitive Radio Sensor Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By fully utilizing the spatial gain and exploiting the multiuser diversity, cooperative spectrum sensing can enhance the sensing accuracy. In the actual wireless environment, the effect of shadowing and fading will result in the different features of signals received by the sensing nodes with different distances from primary user. As a result, some cooperative nodes in deep fading will suffer from serious missed detection, which will affect the final results during the fusing operation. To solve the above problems, a soft decision cooperative spectrum sensing with entropy weight method for cognitive radio sensor networks is presented. Initially, the sensor nodes will be organized into logical groups to obtain energy efficiency and improvement of sensing performance. After receiving the soft sensing information from all member nodes, the cluster heads employs the equal gain soft combination for inter-cluster fusion and then forwards the local decision to the fusion center. During the final decision, the entropy weight method is applied to assign optimal weight value to corresponding cluster local decisions. The simulation results show that the proposed method can outperform some typical clustering scheme for cooperative spectrum sensing in terms of the detection probability and the total error probability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperative spectrum sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soft decision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">entropy weight method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cognitive radio sensor networks</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lin Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yunfei Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 109000-109008</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:109000-109008</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.3001006</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bb53ab4b80d84cf5aaf077d802c2c219</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9112203/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">109000-109008</subfield></datafield></record></collection>
|
score |
7.401388 |