Experimental study of a bidirectional impulse turbine in a steady gas flow
Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bid...
Ausführliche Beschreibung
Autor*in: |
Gorshkov, Ilya Borisovich [verfasserIn] Petrov, Vladimir Vladimirovich [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Известия Саратовского университета. Новая серия Серия: Физика - Saratov State University, 2020, 21(2021), 3, Seite 242-248 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2021 ; number:3 ; pages:242-248 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.18500/1817-3020-2021-21-3-242-248 |
---|
Katalog-ID: |
DOAJ058846077 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058846077 | ||
003 | DE-627 | ||
005 | 20230503064218.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.18500/1817-3020-2021-21-3-242-248 |2 doi | |
035 | |a (DE-627)DOAJ058846077 | ||
035 | |a (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Gorshkov, Ilya Borisovich |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental study of a bidirectional impulse turbine in a steady gas flow |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. | ||
650 | 4 | |a thermoacoustics | |
650 | 4 | |a thermoacoustic engine | |
650 | 4 | |a nozzle apparatus | |
650 | 4 | |a jet turbine | |
650 | 4 | |a stirling engine | |
650 | 4 | |a single-stage turbine | |
653 | 0 | |a Physics | |
700 | 0 | |a Petrov, Vladimir Vladimirovich |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Известия Саратовского университета. Новая серия Серия: Физика |d Saratov State University, 2020 |g 21(2021), 3, Seite 242-248 |w (DE-627)864405324 |w (DE-600)2864049-4 |x 2542193X |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2021 |g number:3 |g pages:242-248 |
856 | 4 | 0 | |u https://doi.org/10.18500/1817-3020-2021-21-3-242-248 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc |z kostenfrei |
856 | 4 | 0 | |u https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1817-3020 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2542-193X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2021 |e 3 |h 242-248 |
author_variant |
i b g ib ibg v v p vv vvp |
---|---|
matchkey_str |
article:2542193X:2021----::xeietltdoaiietoaipleub |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.18500/1817-3020-2021-21-3-242-248 doi (DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc DE-627 ger DE-627 rakwb eng rus QC1-999 Gorshkov, Ilya Borisovich verfasserin aut Experimental study of a bidirectional impulse turbine in a steady gas flow 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics Petrov, Vladimir Vladimirovich verfasserin aut In Известия Саратовского университета. Новая серия Серия: Физика Saratov State University, 2020 21(2021), 3, Seite 242-248 (DE-627)864405324 (DE-600)2864049-4 2542193X nnns volume:21 year:2021 number:3 pages:242-248 https://doi.org/10.18500/1817-3020-2021-21-3-242-248 kostenfrei https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc kostenfrei https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf kostenfrei https://doaj.org/toc/1817-3020 Journal toc kostenfrei https://doaj.org/toc/2542-193X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 3 242-248 |
spelling |
10.18500/1817-3020-2021-21-3-242-248 doi (DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc DE-627 ger DE-627 rakwb eng rus QC1-999 Gorshkov, Ilya Borisovich verfasserin aut Experimental study of a bidirectional impulse turbine in a steady gas flow 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics Petrov, Vladimir Vladimirovich verfasserin aut In Известия Саратовского университета. Новая серия Серия: Физика Saratov State University, 2020 21(2021), 3, Seite 242-248 (DE-627)864405324 (DE-600)2864049-4 2542193X nnns volume:21 year:2021 number:3 pages:242-248 https://doi.org/10.18500/1817-3020-2021-21-3-242-248 kostenfrei https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc kostenfrei https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf kostenfrei https://doaj.org/toc/1817-3020 Journal toc kostenfrei https://doaj.org/toc/2542-193X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 3 242-248 |
allfields_unstemmed |
10.18500/1817-3020-2021-21-3-242-248 doi (DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc DE-627 ger DE-627 rakwb eng rus QC1-999 Gorshkov, Ilya Borisovich verfasserin aut Experimental study of a bidirectional impulse turbine in a steady gas flow 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics Petrov, Vladimir Vladimirovich verfasserin aut In Известия Саратовского университета. Новая серия Серия: Физика Saratov State University, 2020 21(2021), 3, Seite 242-248 (DE-627)864405324 (DE-600)2864049-4 2542193X nnns volume:21 year:2021 number:3 pages:242-248 https://doi.org/10.18500/1817-3020-2021-21-3-242-248 kostenfrei https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc kostenfrei https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf kostenfrei https://doaj.org/toc/1817-3020 Journal toc kostenfrei https://doaj.org/toc/2542-193X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 3 242-248 |
allfieldsGer |
10.18500/1817-3020-2021-21-3-242-248 doi (DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc DE-627 ger DE-627 rakwb eng rus QC1-999 Gorshkov, Ilya Borisovich verfasserin aut Experimental study of a bidirectional impulse turbine in a steady gas flow 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics Petrov, Vladimir Vladimirovich verfasserin aut In Известия Саратовского университета. Новая серия Серия: Физика Saratov State University, 2020 21(2021), 3, Seite 242-248 (DE-627)864405324 (DE-600)2864049-4 2542193X nnns volume:21 year:2021 number:3 pages:242-248 https://doi.org/10.18500/1817-3020-2021-21-3-242-248 kostenfrei https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc kostenfrei https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf kostenfrei https://doaj.org/toc/1817-3020 Journal toc kostenfrei https://doaj.org/toc/2542-193X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 3 242-248 |
allfieldsSound |
10.18500/1817-3020-2021-21-3-242-248 doi (DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc DE-627 ger DE-627 rakwb eng rus QC1-999 Gorshkov, Ilya Borisovich verfasserin aut Experimental study of a bidirectional impulse turbine in a steady gas flow 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics Petrov, Vladimir Vladimirovich verfasserin aut In Известия Саратовского университета. Новая серия Серия: Физика Saratov State University, 2020 21(2021), 3, Seite 242-248 (DE-627)864405324 (DE-600)2864049-4 2542193X nnns volume:21 year:2021 number:3 pages:242-248 https://doi.org/10.18500/1817-3020-2021-21-3-242-248 kostenfrei https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc kostenfrei https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf kostenfrei https://doaj.org/toc/1817-3020 Journal toc kostenfrei https://doaj.org/toc/2542-193X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2021 3 242-248 |
language |
English Russian |
source |
In Известия Саратовского университета. Новая серия Серия: Физика 21(2021), 3, Seite 242-248 volume:21 year:2021 number:3 pages:242-248 |
sourceStr |
In Известия Саратовского университета. Новая серия Серия: Физика 21(2021), 3, Seite 242-248 volume:21 year:2021 number:3 pages:242-248 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine Physics |
isfreeaccess_bool |
true |
container_title |
Известия Саратовского университета. Новая серия Серия: Физика |
authorswithroles_txt_mv |
Gorshkov, Ilya Borisovich @@aut@@ Petrov, Vladimir Vladimirovich @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
864405324 |
id |
DOAJ058846077 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058846077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1817-3020-2021-21-3-242-248</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058846077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gorshkov, Ilya Borisovich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental study of a bidirectional impulse turbine in a steady gas flow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermoacoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermoacoustic engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nozzle apparatus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stirling engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-stage turbine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petrov, Vladimir Vladimirovich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия Серия: Физика</subfield><subfield code="d">Saratov State University, 2020</subfield><subfield code="g">21(2021), 3, Seite 242-248</subfield><subfield code="w">(DE-627)864405324</subfield><subfield code="w">(DE-600)2864049-4</subfield><subfield code="x">2542193X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:242-248</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1817-3020-2021-21-3-242-248</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1817-3020</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2542-193X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">242-248</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Gorshkov, Ilya Borisovich |
spellingShingle |
Gorshkov, Ilya Borisovich misc QC1-999 misc thermoacoustics misc thermoacoustic engine misc nozzle apparatus misc jet turbine misc stirling engine misc single-stage turbine misc Physics Experimental study of a bidirectional impulse turbine in a steady gas flow |
authorStr |
Gorshkov, Ilya Borisovich |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)864405324 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
2542193X |
topic_title |
QC1-999 Experimental study of a bidirectional impulse turbine in a steady gas flow thermoacoustics thermoacoustic engine nozzle apparatus jet turbine stirling engine single-stage turbine |
topic |
misc QC1-999 misc thermoacoustics misc thermoacoustic engine misc nozzle apparatus misc jet turbine misc stirling engine misc single-stage turbine misc Physics |
topic_unstemmed |
misc QC1-999 misc thermoacoustics misc thermoacoustic engine misc nozzle apparatus misc jet turbine misc stirling engine misc single-stage turbine misc Physics |
topic_browse |
misc QC1-999 misc thermoacoustics misc thermoacoustic engine misc nozzle apparatus misc jet turbine misc stirling engine misc single-stage turbine misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Известия Саратовского университета. Новая серия Серия: Физика |
hierarchy_parent_id |
864405324 |
hierarchy_top_title |
Известия Саратовского университета. Новая серия Серия: Физика |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)864405324 (DE-600)2864049-4 |
title |
Experimental study of a bidirectional impulse turbine in a steady gas flow |
ctrlnum |
(DE-627)DOAJ058846077 (DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc |
title_full |
Experimental study of a bidirectional impulse turbine in a steady gas flow |
author_sort |
Gorshkov, Ilya Borisovich |
journal |
Известия Саратовского университета. Новая серия Серия: Физика |
journalStr |
Известия Саратовского университета. Новая серия Серия: Физика |
callnumber-first-code |
Q |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
242 |
author_browse |
Gorshkov, Ilya Borisovich Petrov, Vladimir Vladimirovich |
container_volume |
21 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Gorshkov, Ilya Borisovich |
doi_str_mv |
10.18500/1817-3020-2021-21-3-242-248 |
author2-role |
verfasserin |
title_sort |
experimental study of a bidirectional impulse turbine in a steady gas flow |
callnumber |
QC1-999 |
title_auth |
Experimental study of a bidirectional impulse turbine in a steady gas flow |
abstract |
Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. |
abstractGer |
Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. |
abstract_unstemmed |
Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Experimental study of a bidirectional impulse turbine in a steady gas flow |
url |
https://doi.org/10.18500/1817-3020-2021-21-3-242-248 https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf https://doaj.org/toc/1817-3020 https://doaj.org/toc/2542-193X |
remote_bool |
true |
author2 |
Petrov, Vladimir Vladimirovich |
author2Str |
Petrov, Vladimir Vladimirovich |
ppnlink |
864405324 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.18500/1817-3020-2021-21-3-242-248 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T20:24:00.846Z |
_version_ |
1803590818448015360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058846077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064218.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.18500/1817-3020-2021-21-3-242-248</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058846077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ87e3536719a44bcf9c8556c3a595b5cc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Gorshkov, Ilya Borisovich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental study of a bidirectional impulse turbine in a steady gas flow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background and Objectives: The bidirectional impulse turbine can be used to generate electricity from the energy of sea waves or to convert acoustic energy into electrical energy in thermoacoustic generators. Materials and Methods: In this paper, an experimental study of the characteristics of a bidirectional turbine in a constant gas flow was carried out. The experiments were carried out with a fixed and freely rotating turbine rotor. The outer diameter of the turbine blades is 44 mm. The average gas velocity at the turbine inlet was measured using a Venturi tube and an anemometer. Measurements were made for the dependence of the pressure drop across the nozzles and the turbine rotor on the cross-sectional mean gas velocity at the turbine inlet. Results: It is shown that with an increase in the rotor speed, the pressure drop across the inlet nozzle apparatus decreases, while on the rotor and the outlet nozzle apparatus it increases. The proportion of the parasitic pressure drop at the outlet nozzle apparatus in the pressure drop across the entire turbine increases with an increase in the rotor speed. At a rotor speed of 7000 rpm, the parasitic pressure drop was 15% of the pressure drop across the entire turbine. It was shown that in a constant gas flow, the investigated turbine has a degree of reaction from 0.61 to 0.84.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermoacoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermoacoustic engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nozzle apparatus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">jet turbine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stirling engine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single-stage turbine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Petrov, Vladimir Vladimirovich</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Известия Саратовского университета. Новая серия Серия: Физика</subfield><subfield code="d">Saratov State University, 2020</subfield><subfield code="g">21(2021), 3, Seite 242-248</subfield><subfield code="w">(DE-627)864405324</subfield><subfield code="w">(DE-600)2864049-4</subfield><subfield code="x">2542193X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:242-248</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.18500/1817-3020-2021-21-3-242-248</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/87e3536719a44bcf9c8556c3a595b5cc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/242-248_gorshkov_petrov.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1817-3020</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2542-193X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">242-248</subfield></datafield></record></collection>
|
score |
7.401513 |