A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching
Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does n...
Ausführliche Beschreibung
Autor*in: |
Fu Liu [verfasserIn] Shoukun Jiang [verfasserIn] Bing Kang [verfasserIn] Tao Hou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 74525-74534 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:74525-74534 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2988714 |
---|
Katalog-ID: |
DOAJ058858547 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058858547 | ||
003 | DE-627 | ||
005 | 20230503064225.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2988714 |2 doi | |
035 | |a (DE-627)DOAJ058858547 | ||
035 | |a (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Fu Liu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. | ||
650 | 4 | |a Dorsal hand vein recognition | |
650 | 4 | |a biometric graph matching | |
650 | 4 | |a occlusion | |
650 | 4 | |a databases | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Shoukun Jiang |e verfasserin |4 aut | |
700 | 0 | |a Bing Kang |e verfasserin |4 aut | |
700 | 0 | |a Tao Hou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 74525-74534 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:74525-74534 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2988714 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9072173/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 74525-74534 |
author_variant |
f l fl s j sj b k bk t h th |
---|---|
matchkey_str |
article:21693536:2020----::rcgiinytmoprilyclddosladensnipo |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2988714 doi (DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Liu verfasserin aut A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering Shoukun Jiang verfasserin aut Bing Kang verfasserin aut Tao Hou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 74525-74534 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:74525-74534 https://doi.org/10.1109/ACCESS.2020.2988714 kostenfrei https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 kostenfrei https://ieeexplore.ieee.org/document/9072173/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 74525-74534 |
spelling |
10.1109/ACCESS.2020.2988714 doi (DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Liu verfasserin aut A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering Shoukun Jiang verfasserin aut Bing Kang verfasserin aut Tao Hou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 74525-74534 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:74525-74534 https://doi.org/10.1109/ACCESS.2020.2988714 kostenfrei https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 kostenfrei https://ieeexplore.ieee.org/document/9072173/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 74525-74534 |
allfields_unstemmed |
10.1109/ACCESS.2020.2988714 doi (DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Liu verfasserin aut A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering Shoukun Jiang verfasserin aut Bing Kang verfasserin aut Tao Hou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 74525-74534 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:74525-74534 https://doi.org/10.1109/ACCESS.2020.2988714 kostenfrei https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 kostenfrei https://ieeexplore.ieee.org/document/9072173/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 74525-74534 |
allfieldsGer |
10.1109/ACCESS.2020.2988714 doi (DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Liu verfasserin aut A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering Shoukun Jiang verfasserin aut Bing Kang verfasserin aut Tao Hou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 74525-74534 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:74525-74534 https://doi.org/10.1109/ACCESS.2020.2988714 kostenfrei https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 kostenfrei https://ieeexplore.ieee.org/document/9072173/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 74525-74534 |
allfieldsSound |
10.1109/ACCESS.2020.2988714 doi (DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 DE-627 ger DE-627 rakwb eng TK1-9971 Fu Liu verfasserin aut A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering Shoukun Jiang verfasserin aut Bing Kang verfasserin aut Tao Hou verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 74525-74534 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:74525-74534 https://doi.org/10.1109/ACCESS.2020.2988714 kostenfrei https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 kostenfrei https://ieeexplore.ieee.org/document/9072173/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 74525-74534 |
language |
English |
source |
In IEEE Access 8(2020), Seite 74525-74534 volume:8 year:2020 pages:74525-74534 |
sourceStr |
In IEEE Access 8(2020), Seite 74525-74534 volume:8 year:2020 pages:74525-74534 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dorsal hand vein recognition biometric graph matching occlusion databases Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Fu Liu @@aut@@ Shoukun Jiang @@aut@@ Bing Kang @@aut@@ Tao Hou @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ058858547 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058858547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2988714</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058858547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb012ff2d84e342d1911f34ef8065b126</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fu Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dorsal hand vein recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biometric graph matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">occlusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">databases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shoukun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 74525-74534</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:74525-74534</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2988714</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9072173/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">74525-74534</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Fu Liu |
spellingShingle |
Fu Liu misc TK1-9971 misc Dorsal hand vein recognition misc biometric graph matching misc occlusion misc databases misc Electrical engineering. Electronics. Nuclear engineering A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
authorStr |
Fu Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching Dorsal hand vein recognition biometric graph matching occlusion databases |
topic |
misc TK1-9971 misc Dorsal hand vein recognition misc biometric graph matching misc occlusion misc databases misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Dorsal hand vein recognition misc biometric graph matching misc occlusion misc databases misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Dorsal hand vein recognition misc biometric graph matching misc occlusion misc databases misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
ctrlnum |
(DE-627)DOAJ058858547 (DE-599)DOAJb012ff2d84e342d1911f34ef8065b126 |
title_full |
A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
author_sort |
Fu Liu |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
74525 |
author_browse |
Fu Liu Shoukun Jiang Bing Kang Tao Hou |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Fu Liu |
doi_str_mv |
10.1109/ACCESS.2020.2988714 |
author2-role |
verfasserin |
title_sort |
recognition system for partially occluded dorsal hand vein using improved biometric graph matching |
callnumber |
TK1-9971 |
title_auth |
A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
abstract |
Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. |
abstractGer |
Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. |
abstract_unstemmed |
Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching |
url |
https://doi.org/10.1109/ACCESS.2020.2988714 https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126 https://ieeexplore.ieee.org/document/9072173/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Shoukun Jiang Bing Kang Tao Hou |
author2Str |
Shoukun Jiang Bing Kang Tao Hou |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2988714 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:28:01.826Z |
_version_ |
1803591071121276928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058858547</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503064225.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2988714</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058858547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb012ff2d84e342d1911f34ef8065b126</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Fu Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching is a common shape-based feature extraction algorithm for vein recognition. However, this method does not consider edge attributes, which can provide additional discrimination ability. We present an improved biometric graph matching method that includes edge attributes for graph registration and a matching module to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal hand vein. A database of normal hand vein images, three databases of images with artificially occluded dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed hands are established to verify the validity of the proposed method. The experimental results demonstrated that the equal error rates and the accuracies were 0.0202 and 98.09% ± 0.28%, respectively for the normal hand vein images, 0.0453 and 96.58% ± 0.34%, respectively for images of artificially occluded dorsal hand vein with occlusion at all positions and area ratios (0 - 20%, mean occluded area ratio = 9.3%), and 0.0343 and 97.14% ± 0.29%, respectively for the images of tattooed hands.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dorsal hand vein recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biometric graph matching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">occlusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">databases</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shoukun Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bing Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Hou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 74525-74534</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:74525-74534</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2988714</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b012ff2d84e342d1911f34ef8065b126</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9072173/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">74525-74534</subfield></datafield></record></collection>
|
score |
7.401045 |