Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions
Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality met...
Ausführliche Beschreibung
Autor*in: |
Laihua Wang [verfasserIn] Yue Zhao [verfasserIn] Xu Ma [verfasserIn] Sumin Qi [verfasserIn] Weiqing Yan [verfasserIn] Hua Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 8(2020), Seite 27938-27948 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2020 ; pages:27938-27948 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2020.2971995 |
---|
Katalog-ID: |
DOAJ058896546 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ058896546 | ||
003 | DE-627 | ||
005 | 20230503112236.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2020.2971995 |2 doi | |
035 | |a (DE-627)DOAJ058896546 | ||
035 | |a (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Laihua Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. | ||
650 | 4 | |a DIBR | |
650 | 4 | |a synthesis distortions | |
650 | 4 | |a quality evaluation | |
650 | 4 | |a view synthesis | |
650 | 4 | |a perceptual quality | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Yue Zhao |e verfasserin |4 aut | |
700 | 0 | |a Xu Ma |e verfasserin |4 aut | |
700 | 0 | |a Sumin Qi |e verfasserin |4 aut | |
700 | 0 | |a Weiqing Yan |e verfasserin |4 aut | |
700 | 0 | |a Hua Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 8(2020), Seite 27938-27948 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2020 |g pages:27938-27948 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2020.2971995 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/8985347/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2020 |h 27938-27948 |
author_variant |
l w lw y z yz x m xm s q sq w y wy h c hc |
---|---|
matchkey_str |
article:21693536:2020----::ultassmnfriryteieiaewtlcl |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
TK |
publishDate |
2020 |
allfields |
10.1109/ACCESS.2020.2971995 doi (DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f DE-627 ger DE-627 rakwb eng TK1-9971 Laihua Wang verfasserin aut Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering Yue Zhao verfasserin aut Xu Ma verfasserin aut Sumin Qi verfasserin aut Weiqing Yan verfasserin aut Hua Chen verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 27938-27948 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:27938-27948 https://doi.org/10.1109/ACCESS.2020.2971995 kostenfrei https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f kostenfrei https://ieeexplore.ieee.org/document/8985347/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 27938-27948 |
spelling |
10.1109/ACCESS.2020.2971995 doi (DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f DE-627 ger DE-627 rakwb eng TK1-9971 Laihua Wang verfasserin aut Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering Yue Zhao verfasserin aut Xu Ma verfasserin aut Sumin Qi verfasserin aut Weiqing Yan verfasserin aut Hua Chen verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 27938-27948 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:27938-27948 https://doi.org/10.1109/ACCESS.2020.2971995 kostenfrei https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f kostenfrei https://ieeexplore.ieee.org/document/8985347/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 27938-27948 |
allfields_unstemmed |
10.1109/ACCESS.2020.2971995 doi (DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f DE-627 ger DE-627 rakwb eng TK1-9971 Laihua Wang verfasserin aut Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering Yue Zhao verfasserin aut Xu Ma verfasserin aut Sumin Qi verfasserin aut Weiqing Yan verfasserin aut Hua Chen verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 27938-27948 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:27938-27948 https://doi.org/10.1109/ACCESS.2020.2971995 kostenfrei https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f kostenfrei https://ieeexplore.ieee.org/document/8985347/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 27938-27948 |
allfieldsGer |
10.1109/ACCESS.2020.2971995 doi (DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f DE-627 ger DE-627 rakwb eng TK1-9971 Laihua Wang verfasserin aut Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering Yue Zhao verfasserin aut Xu Ma verfasserin aut Sumin Qi verfasserin aut Weiqing Yan verfasserin aut Hua Chen verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 27938-27948 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:27938-27948 https://doi.org/10.1109/ACCESS.2020.2971995 kostenfrei https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f kostenfrei https://ieeexplore.ieee.org/document/8985347/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 27938-27948 |
allfieldsSound |
10.1109/ACCESS.2020.2971995 doi (DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f DE-627 ger DE-627 rakwb eng TK1-9971 Laihua Wang verfasserin aut Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering Yue Zhao verfasserin aut Xu Ma verfasserin aut Sumin Qi verfasserin aut Weiqing Yan verfasserin aut Hua Chen verfasserin aut In IEEE Access IEEE, 2014 8(2020), Seite 27938-27948 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:8 year:2020 pages:27938-27948 https://doi.org/10.1109/ACCESS.2020.2971995 kostenfrei https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f kostenfrei https://ieeexplore.ieee.org/document/8985347/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2020 27938-27948 |
language |
English |
source |
In IEEE Access 8(2020), Seite 27938-27948 volume:8 year:2020 pages:27938-27948 |
sourceStr |
In IEEE Access 8(2020), Seite 27938-27948 volume:8 year:2020 pages:27938-27948 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DIBR synthesis distortions quality evaluation view synthesis perceptual quality Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Laihua Wang @@aut@@ Yue Zhao @@aut@@ Xu Ma @@aut@@ Sumin Qi @@aut@@ Weiqing Yan @@aut@@ Hua Chen @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ058896546 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058896546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503112236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2971995</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058896546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laihua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DIBR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis distortions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">view synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perceptual quality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sumin Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiqing Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 27938-27948</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:27938-27948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2971995</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8985347/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">27938-27948</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Laihua Wang |
spellingShingle |
Laihua Wang misc TK1-9971 misc DIBR misc synthesis distortions misc quality evaluation misc view synthesis misc perceptual quality misc Electrical engineering. Electronics. Nuclear engineering Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
authorStr |
Laihua Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions DIBR synthesis distortions quality evaluation view synthesis perceptual quality |
topic |
misc TK1-9971 misc DIBR misc synthesis distortions misc quality evaluation misc view synthesis misc perceptual quality misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc DIBR misc synthesis distortions misc quality evaluation misc view synthesis misc perceptual quality misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc DIBR misc synthesis distortions misc quality evaluation misc view synthesis misc perceptual quality misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
ctrlnum |
(DE-627)DOAJ058896546 (DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f |
title_full |
Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
author_sort |
Laihua Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
27938 |
author_browse |
Laihua Wang Yue Zhao Xu Ma Sumin Qi Weiqing Yan Hua Chen |
container_volume |
8 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Laihua Wang |
doi_str_mv |
10.1109/ACCESS.2020.2971995 |
author2-role |
verfasserin |
title_sort |
quality assessment for dibr-synthesized images with local and global distortions |
callnumber |
TK1-9971 |
title_auth |
Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
abstract |
Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. |
abstractGer |
Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. |
abstract_unstemmed |
Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions |
url |
https://doi.org/10.1109/ACCESS.2020.2971995 https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f https://ieeexplore.ieee.org/document/8985347/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Yue Zhao Xu Ma Sumin Qi Weiqing Yan Hua Chen |
author2Str |
Yue Zhao Xu Ma Sumin Qi Weiqing Yan Hua Chen |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2020.2971995 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T20:40:06.669Z |
_version_ |
1803591831174250496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ058896546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503112236.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2020.2971995</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ058896546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcd1767ee0df34d51b30ed02843ab7c8f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Laihua Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quality Assessment for DIBR-Synthesized Images With Local and Global Distortions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Depth-Image-Based-Rendering (DIBR), as one important technique in 3D video system, can be used to generate virtual views. Unfortunately, the DIBR algorithms will introduce various distortions and induce an annoying viewing experience. And it has been proved that traditional 2D assessment quality metrics are not suitable for the DIBR-synthesized views. In this paper, we propose a novel approach to assess the quality of DIBR-synthesized images. The proposed method mainly considers three kinds of DIBR-related distortions: holes distortion, strip-sharped distortion and global sharpness. Holes and strip distortions as two local features are used to characterize the local quality of DIBR-synthesized image, respectively. For the global sharpness we consider the Just Notice Difference (JND) model of human eyes and use it to extract the JND-based global difference for analyzing the global quality. Finally, we combine the holes distortion evaluation, strip distortion evaluation and global quality to infer the overall perceptual quality. Extensive experiments indicate that our method achieves higher accuracy of quality prediction than most competing metrics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DIBR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis distortions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quality evaluation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">view synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perceptual quality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yue Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xu Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sumin Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weiqing Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hua Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">8(2020), Seite 27938-27948</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:27938-27948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2020.2971995</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cd1767ee0df34d51b30ed02843ab7c8f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/8985347/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2020</subfield><subfield code="h">27938-27948</subfield></datafield></record></collection>
|
score |
7.4028063 |