Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort
Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possi...
Ausführliche Beschreibung
Autor*in: |
Rajiv Yadav [verfasserIn] Sohrab Arora [verfasserIn] Manish Sachdeva [verfasserIn] Narmada Prasad Gupta [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Indian Journal of Urology - Wolters Kluwer Medknow Publications, 2017, 32(2016), 3, Seite 199-203 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:3 ; pages:199-203 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.4103/0970-1591.185096 |
---|
Katalog-ID: |
DOAJ059103280 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059103280 | ||
003 | DE-627 | ||
005 | 20230308231736.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.4103/0970-1591.185096 |2 doi | |
035 | |a (DE-627)DOAJ059103280 | ||
035 | |a (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC870-923 | |
100 | 0 | |a Rajiv Yadav |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. | ||
650 | 4 | |a India | |
650 | 4 | |a nomogram | |
650 | 4 | |a Partin's nomogram | |
650 | 4 | |a prostate cancer | |
650 | 4 | |a radical prostatectomy | |
650 | 4 | |a robotic prostatectomy | |
653 | 0 | |a Diseases of the genitourinary system. Urology | |
700 | 0 | |a Sohrab Arora |e verfasserin |4 aut | |
700 | 0 | |a Manish Sachdeva |e verfasserin |4 aut | |
700 | 0 | |a Narmada Prasad Gupta |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Indian Journal of Urology |d Wolters Kluwer Medknow Publications, 2017 |g 32(2016), 3, Seite 199-203 |w (DE-627)508330939 |w (DE-600)2223236-9 |x 19983824 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:3 |g pages:199-203 |
856 | 4 | 0 | |u https://doi.org/10.4103/0970-1591.185096 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 |z kostenfrei |
856 | 4 | 0 | |u http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0970-1591 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1998-3824 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 32 |j 2016 |e 3 |h 199-203 |
author_variant |
r y ry s a sa m s ms n p g npg |
---|---|
matchkey_str |
article:19983824:2016----::sesetfhpromnefatnnmga20icne |
hierarchy_sort_str |
2016 |
callnumber-subject-code |
RC |
publishDate |
2016 |
allfields |
10.4103/0970-1591.185096 doi (DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 DE-627 ger DE-627 rakwb eng RC870-923 Rajiv Yadav verfasserin aut Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology Sohrab Arora verfasserin aut Manish Sachdeva verfasserin aut Narmada Prasad Gupta verfasserin aut In Indian Journal of Urology Wolters Kluwer Medknow Publications, 2017 32(2016), 3, Seite 199-203 (DE-627)508330939 (DE-600)2223236-9 19983824 nnns volume:32 year:2016 number:3 pages:199-203 https://doi.org/10.4103/0970-1591.185096 kostenfrei https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 kostenfrei http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav kostenfrei https://doaj.org/toc/0970-1591 Journal toc kostenfrei https://doaj.org/toc/1998-3824 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2016 3 199-203 |
spelling |
10.4103/0970-1591.185096 doi (DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 DE-627 ger DE-627 rakwb eng RC870-923 Rajiv Yadav verfasserin aut Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology Sohrab Arora verfasserin aut Manish Sachdeva verfasserin aut Narmada Prasad Gupta verfasserin aut In Indian Journal of Urology Wolters Kluwer Medknow Publications, 2017 32(2016), 3, Seite 199-203 (DE-627)508330939 (DE-600)2223236-9 19983824 nnns volume:32 year:2016 number:3 pages:199-203 https://doi.org/10.4103/0970-1591.185096 kostenfrei https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 kostenfrei http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav kostenfrei https://doaj.org/toc/0970-1591 Journal toc kostenfrei https://doaj.org/toc/1998-3824 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2016 3 199-203 |
allfields_unstemmed |
10.4103/0970-1591.185096 doi (DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 DE-627 ger DE-627 rakwb eng RC870-923 Rajiv Yadav verfasserin aut Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology Sohrab Arora verfasserin aut Manish Sachdeva verfasserin aut Narmada Prasad Gupta verfasserin aut In Indian Journal of Urology Wolters Kluwer Medknow Publications, 2017 32(2016), 3, Seite 199-203 (DE-627)508330939 (DE-600)2223236-9 19983824 nnns volume:32 year:2016 number:3 pages:199-203 https://doi.org/10.4103/0970-1591.185096 kostenfrei https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 kostenfrei http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav kostenfrei https://doaj.org/toc/0970-1591 Journal toc kostenfrei https://doaj.org/toc/1998-3824 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2016 3 199-203 |
allfieldsGer |
10.4103/0970-1591.185096 doi (DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 DE-627 ger DE-627 rakwb eng RC870-923 Rajiv Yadav verfasserin aut Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology Sohrab Arora verfasserin aut Manish Sachdeva verfasserin aut Narmada Prasad Gupta verfasserin aut In Indian Journal of Urology Wolters Kluwer Medknow Publications, 2017 32(2016), 3, Seite 199-203 (DE-627)508330939 (DE-600)2223236-9 19983824 nnns volume:32 year:2016 number:3 pages:199-203 https://doi.org/10.4103/0970-1591.185096 kostenfrei https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 kostenfrei http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav kostenfrei https://doaj.org/toc/0970-1591 Journal toc kostenfrei https://doaj.org/toc/1998-3824 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2016 3 199-203 |
allfieldsSound |
10.4103/0970-1591.185096 doi (DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 DE-627 ger DE-627 rakwb eng RC870-923 Rajiv Yadav verfasserin aut Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology Sohrab Arora verfasserin aut Manish Sachdeva verfasserin aut Narmada Prasad Gupta verfasserin aut In Indian Journal of Urology Wolters Kluwer Medknow Publications, 2017 32(2016), 3, Seite 199-203 (DE-627)508330939 (DE-600)2223236-9 19983824 nnns volume:32 year:2016 number:3 pages:199-203 https://doi.org/10.4103/0970-1591.185096 kostenfrei https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 kostenfrei http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav kostenfrei https://doaj.org/toc/0970-1591 Journal toc kostenfrei https://doaj.org/toc/1998-3824 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 32 2016 3 199-203 |
language |
English |
source |
In Indian Journal of Urology 32(2016), 3, Seite 199-203 volume:32 year:2016 number:3 pages:199-203 |
sourceStr |
In Indian Journal of Urology 32(2016), 3, Seite 199-203 volume:32 year:2016 number:3 pages:199-203 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy Diseases of the genitourinary system. Urology |
isfreeaccess_bool |
true |
container_title |
Indian Journal of Urology |
authorswithroles_txt_mv |
Rajiv Yadav @@aut@@ Sohrab Arora @@aut@@ Manish Sachdeva @@aut@@ Narmada Prasad Gupta @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
508330939 |
id |
DOAJ059103280 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059103280</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308231736.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4103/0970-1591.185096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059103280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC870-923</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rajiv Yadav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">India</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partin's nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radical prostatectomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robotic prostatectomy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the genitourinary system. Urology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sohrab Arora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manish Sachdeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Narmada Prasad Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Indian Journal of Urology</subfield><subfield code="d">Wolters Kluwer Medknow Publications, 2017</subfield><subfield code="g">32(2016), 3, Seite 199-203</subfield><subfield code="w">(DE-627)508330939</subfield><subfield code="w">(DE-600)2223236-9</subfield><subfield code="x">19983824</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:199-203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4103/0970-1591.185096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0970-1591</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1998-3824</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">199-203</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Rajiv Yadav |
spellingShingle |
Rajiv Yadav misc RC870-923 misc India misc nomogram misc Partin's nomogram misc prostate cancer misc radical prostatectomy misc robotic prostatectomy misc Diseases of the genitourinary system. Urology Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
authorStr |
Rajiv Yadav |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)508330939 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC870-923 |
illustrated |
Not Illustrated |
issn |
19983824 |
topic_title |
RC870-923 Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort India nomogram Partin's nomogram prostate cancer radical prostatectomy robotic prostatectomy |
topic |
misc RC870-923 misc India misc nomogram misc Partin's nomogram misc prostate cancer misc radical prostatectomy misc robotic prostatectomy misc Diseases of the genitourinary system. Urology |
topic_unstemmed |
misc RC870-923 misc India misc nomogram misc Partin's nomogram misc prostate cancer misc radical prostatectomy misc robotic prostatectomy misc Diseases of the genitourinary system. Urology |
topic_browse |
misc RC870-923 misc India misc nomogram misc Partin's nomogram misc prostate cancer misc radical prostatectomy misc robotic prostatectomy misc Diseases of the genitourinary system. Urology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Indian Journal of Urology |
hierarchy_parent_id |
508330939 |
hierarchy_top_title |
Indian Journal of Urology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)508330939 (DE-600)2223236-9 |
title |
Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
ctrlnum |
(DE-627)DOAJ059103280 (DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196 |
title_full |
Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
author_sort |
Rajiv Yadav |
journal |
Indian Journal of Urology |
journalStr |
Indian Journal of Urology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
199 |
author_browse |
Rajiv Yadav Sohrab Arora Manish Sachdeva Narmada Prasad Gupta |
container_volume |
32 |
class |
RC870-923 |
format_se |
Elektronische Aufsätze |
author-letter |
Rajiv Yadav |
doi_str_mv |
10.4103/0970-1591.185096 |
author2-role |
verfasserin |
title_sort |
assessment of the performance of partin's nomogram (2007) in contemporary indian cohort |
callnumber |
RC870-923 |
title_auth |
Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
abstract |
Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. |
abstractGer |
Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. |
abstract_unstemmed |
Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2106 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort |
url |
https://doi.org/10.4103/0970-1591.185096 https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196 http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav https://doaj.org/toc/0970-1591 https://doaj.org/toc/1998-3824 |
remote_bool |
true |
author2 |
Sohrab Arora Manish Sachdeva Narmada Prasad Gupta |
author2Str |
Sohrab Arora Manish Sachdeva Narmada Prasad Gupta |
ppnlink |
508330939 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.4103/0970-1591.185096 |
callnumber-a |
RC870-923 |
up_date |
2024-07-03T21:47:08.901Z |
_version_ |
1803596048796483585 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059103280</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308231736.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4103/0970-1591.185096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059103280</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9f6aa601caf24ba1a3c917a821379196</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC870-923</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Rajiv Yadav</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessment of the performance of Partin's nomogram (2007) in contemporary Indian cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction: Partin's nomogram is an important prognostic tool to predict adverse pathological features for clinically localized prostate carcinoma. This tool is widely used by both radiation and surgical oncologists for pre-intervention counseling, treatment planning, and predicting the possible need for adjuvant treatment. However, the model is derived from a Western population with typical characteristics of prostate cancer in a prostate-specific antigen (PSA) screened population. Therefore, this study was conducted to assess the performance of the Partin's nomogram as applied to an Indian cohort by assessing the discrimination and calibration properties. Methods: A retrospective review of 282 patients treated with robotic radical prostatectomy from 2010 to 2015 was conducted. Partin tables (year 2007) were used to calculate the predicted probabilities for lymph node invasion (LNI), seminal vesicle invasion (SVI), and extraprostatic extension (EPE). The discrimination properties were assessed using the receiver operating characteristic (ROC) curves. Calibration of the model was done to show the relationship between predicted and observed values. Results: The mean age of the patients was 64.3 years. Most (59.4%) were clinical T2 disease. Patients with PSA <10 ng/ml comprised 60% of the population. ECE, SVI, and LNI were present in 39.2%, 22%, and 11% of cases, respectively. ROC analysis revealed area under curve values for EPE, SVI, and LNI of 68%, 67.5%, and 71.2%, respectively. Calibration plot suggested that the Partin tables under-predicted the risk whenever the values of predicted risk were more than 26%, 3%, and 1% for EPE, SVI, and LNI, respectively, and over predicted when the risk was lower. Conclusion: Our data show that Partin's tables, despite having fair discrimination properties, do not accurately predict LNI, SVI, and ECE across the entire range of predicted values in a contemporary Indian cohort.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">India</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partin's nomogram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radical prostatectomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robotic prostatectomy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diseases of the genitourinary system. Urology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sohrab Arora</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Manish Sachdeva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Narmada Prasad Gupta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Indian Journal of Urology</subfield><subfield code="d">Wolters Kluwer Medknow Publications, 2017</subfield><subfield code="g">32(2016), 3, Seite 199-203</subfield><subfield code="w">(DE-627)508330939</subfield><subfield code="w">(DE-600)2223236-9</subfield><subfield code="x">19983824</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:199-203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4103/0970-1591.185096</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9f6aa601caf24ba1a3c917a821379196</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.indianjurol.com/article.asp?issn=0970-1591;year=2016;volume=32;issue=3;spage=199;epage=203;aulast=Yadav</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0970-1591</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1998-3824</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">199-203</subfield></datafield></record></collection>
|
score |
7.401886 |