Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan
Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based re...
Ausführliche Beschreibung
Autor*in: |
Pollen Chakma [verfasserIn] Aysha Akter [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of the Civil Engineering Forum - Universitas Gadjah Mada, 2017, 7(2021), 3, Seite 267-278 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2021 ; number:3 ; pages:267-278 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.22146/jcef.64497 |
---|
Katalog-ID: |
DOAJ059112573 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059112573 | ||
003 | DE-627 | ||
005 | 20230308231804.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.22146/jcef.64497 |2 doi | |
035 | |a (DE-627)DOAJ059112573 | ||
035 | |a (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a Pollen Chakma |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. | ||
650 | 4 | |a super cyclone amphan | |
650 | 4 | |a storm surge | |
650 | 4 | |a flood mapping | |
650 | 4 | |a sar | |
650 | 4 | |a sentinel-1 | |
650 | 4 | |a google earth engine. | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a Aysha Akter |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of the Civil Engineering Forum |d Universitas Gadjah Mada, 2017 |g 7(2021), 3, Seite 267-278 |w (DE-627)1760644285 |x 25495925 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2021 |g number:3 |g pages:267-278 |
856 | 4 | 0 | |u https://doi.org/10.22146/jcef.64497 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 |z kostenfrei |
856 | 4 | 0 | |u https://jurnal.ugm.ac.id/jcef/article/view/64497 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2581-1037 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2549-5925 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2021 |e 3 |h 267-278 |
author_variant |
p c pc a a aa |
---|---|
matchkey_str |
article:25495925:2021----::lompignhcatleinfagaehsnsnie1aiaeaa |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.22146/jcef.64497 doi (DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 DE-627 ger DE-627 rakwb eng TA1-2040 Pollen Chakma verfasserin aut Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) Aysha Akter verfasserin aut In Journal of the Civil Engineering Forum Universitas Gadjah Mada, 2017 7(2021), 3, Seite 267-278 (DE-627)1760644285 25495925 nnns volume:7 year:2021 number:3 pages:267-278 https://doi.org/10.22146/jcef.64497 kostenfrei https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 kostenfrei https://jurnal.ugm.ac.id/jcef/article/view/64497 kostenfrei https://doaj.org/toc/2581-1037 Journal toc kostenfrei https://doaj.org/toc/2549-5925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2021 3 267-278 |
spelling |
10.22146/jcef.64497 doi (DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 DE-627 ger DE-627 rakwb eng TA1-2040 Pollen Chakma verfasserin aut Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) Aysha Akter verfasserin aut In Journal of the Civil Engineering Forum Universitas Gadjah Mada, 2017 7(2021), 3, Seite 267-278 (DE-627)1760644285 25495925 nnns volume:7 year:2021 number:3 pages:267-278 https://doi.org/10.22146/jcef.64497 kostenfrei https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 kostenfrei https://jurnal.ugm.ac.id/jcef/article/view/64497 kostenfrei https://doaj.org/toc/2581-1037 Journal toc kostenfrei https://doaj.org/toc/2549-5925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2021 3 267-278 |
allfields_unstemmed |
10.22146/jcef.64497 doi (DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 DE-627 ger DE-627 rakwb eng TA1-2040 Pollen Chakma verfasserin aut Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) Aysha Akter verfasserin aut In Journal of the Civil Engineering Forum Universitas Gadjah Mada, 2017 7(2021), 3, Seite 267-278 (DE-627)1760644285 25495925 nnns volume:7 year:2021 number:3 pages:267-278 https://doi.org/10.22146/jcef.64497 kostenfrei https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 kostenfrei https://jurnal.ugm.ac.id/jcef/article/view/64497 kostenfrei https://doaj.org/toc/2581-1037 Journal toc kostenfrei https://doaj.org/toc/2549-5925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2021 3 267-278 |
allfieldsGer |
10.22146/jcef.64497 doi (DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 DE-627 ger DE-627 rakwb eng TA1-2040 Pollen Chakma verfasserin aut Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) Aysha Akter verfasserin aut In Journal of the Civil Engineering Forum Universitas Gadjah Mada, 2017 7(2021), 3, Seite 267-278 (DE-627)1760644285 25495925 nnns volume:7 year:2021 number:3 pages:267-278 https://doi.org/10.22146/jcef.64497 kostenfrei https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 kostenfrei https://jurnal.ugm.ac.id/jcef/article/view/64497 kostenfrei https://doaj.org/toc/2581-1037 Journal toc kostenfrei https://doaj.org/toc/2549-5925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2021 3 267-278 |
allfieldsSound |
10.22146/jcef.64497 doi (DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 DE-627 ger DE-627 rakwb eng TA1-2040 Pollen Chakma verfasserin aut Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) Aysha Akter verfasserin aut In Journal of the Civil Engineering Forum Universitas Gadjah Mada, 2017 7(2021), 3, Seite 267-278 (DE-627)1760644285 25495925 nnns volume:7 year:2021 number:3 pages:267-278 https://doi.org/10.22146/jcef.64497 kostenfrei https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 kostenfrei https://jurnal.ugm.ac.id/jcef/article/view/64497 kostenfrei https://doaj.org/toc/2581-1037 Journal toc kostenfrei https://doaj.org/toc/2549-5925 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 7 2021 3 267-278 |
language |
English |
source |
In Journal of the Civil Engineering Forum 7(2021), 3, Seite 267-278 volume:7 year:2021 number:3 pages:267-278 |
sourceStr |
In Journal of the Civil Engineering Forum 7(2021), 3, Seite 267-278 volume:7 year:2021 number:3 pages:267-278 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine. Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Journal of the Civil Engineering Forum |
authorswithroles_txt_mv |
Pollen Chakma @@aut@@ Aysha Akter @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1760644285 |
id |
DOAJ059112573 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059112573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308231804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22146/jcef.64497</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059112573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe72e772082c54689a18a3b57e5d35c53</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pollen Chakma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super cyclone amphan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm surge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flood mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sentinel-1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">google earth engine.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aysha Akter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of the Civil Engineering Forum</subfield><subfield code="d">Universitas Gadjah Mada, 2017</subfield><subfield code="g">7(2021), 3, Seite 267-278</subfield><subfield code="w">(DE-627)1760644285</subfield><subfield code="x">25495925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:267-278</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22146/jcef.64497</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jurnal.ugm.ac.id/jcef/article/view/64497</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2581-1037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2549-5925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">267-278</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Pollen Chakma |
spellingShingle |
Pollen Chakma misc TA1-2040 misc super cyclone amphan misc storm surge misc flood mapping misc sar misc sentinel-1 misc google earth engine. misc Engineering (General). Civil engineering (General) Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
authorStr |
Pollen Chakma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760644285 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
25495925 |
topic_title |
TA1-2040 Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan super cyclone amphan storm surge flood mapping sar sentinel-1 google earth engine |
topic |
misc TA1-2040 misc super cyclone amphan misc storm surge misc flood mapping misc sar misc sentinel-1 misc google earth engine. misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc super cyclone amphan misc storm surge misc flood mapping misc sar misc sentinel-1 misc google earth engine. misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc super cyclone amphan misc storm surge misc flood mapping misc sar misc sentinel-1 misc google earth engine. misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Civil Engineering Forum |
hierarchy_parent_id |
1760644285 |
hierarchy_top_title |
Journal of the Civil Engineering Forum |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760644285 |
title |
Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
ctrlnum |
(DE-627)DOAJ059112573 (DE-599)DOAJe72e772082c54689a18a3b57e5d35c53 |
title_full |
Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
author_sort |
Pollen Chakma |
journal |
Journal of the Civil Engineering Forum |
journalStr |
Journal of the Civil Engineering Forum |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
267 |
author_browse |
Pollen Chakma Aysha Akter |
container_volume |
7 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
Pollen Chakma |
doi_str_mv |
10.22146/jcef.64497 |
author2-role |
verfasserin |
title_sort |
flood mapping in the coastal region of bangladesh using sentinel-1 sar images: a case study of super cyclone amphan |
callnumber |
TA1-2040 |
title_auth |
Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
abstract |
Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. |
abstractGer |
Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. |
abstract_unstemmed |
Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan |
url |
https://doi.org/10.22146/jcef.64497 https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53 https://jurnal.ugm.ac.id/jcef/article/view/64497 https://doaj.org/toc/2581-1037 https://doaj.org/toc/2549-5925 |
remote_bool |
true |
author2 |
Aysha Akter |
author2Str |
Aysha Akter |
ppnlink |
1760644285 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22146/jcef.64497 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T21:50:14.534Z |
_version_ |
1803596243440500736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059112573</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308231804.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22146/jcef.64497</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059112573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe72e772082c54689a18a3b57e5d35c53</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Pollen Chakma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flood Mapping in the Coastal Region of Bangladesh Using Sentinel-1 SAR Images: A Case Study of Super Cyclone Amphan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Floods are triggered by water overflow into drylands from several sources, including rivers, lakes, oceans, or heavy rainfall. Near real-time (NRT) flood mapping plays an important role in taking strategic measures to reduce flood damage after a flood event. There are many satellite imagery based remote sensing techniques that are widely used to generate flood maps. Synthetic aperture radar (SAR) images have proven to be more effective in flood mapping due to its high spatial resolution and cloud penetration capacity. This case study is focused on the super cyclone, commonly known as Amphan, stemming from the west Bengal-Bangladesh coast across the Sundarbans on 20 May 2020, with a wind speed between 155 -165 gusting up to 185 . The flooding extent is determined by analyzing the pre and post-event synthetic aperture radar images, using the change detection and thresholding (CDAT) method. The results showed an inundated landmass of 2146 on 22 May 2020, excluding Sundarban. However, the area became 1425 about a week after the event, precisely on 28 May 2020 . This persistency generated a more severe and intense flood, due to the broken embankments. Furthermore, 13 out of 19 coastal districts were affected by the flooding, while 8 were highly inundated, including Bagerhat, Pirojpur, Satkhira, Khulna, Barisal, Jhalokati, Patuakhali and Barguna. These findings were subsequently compared with an inundation map created with a validation survey immediately after the event and also with the disposed location using a machine learning-based image classification technique. Consequently, the comparison showed a close similarity between the inundation scenario and the flood reports from the secondary sources. This circumstance envisages the significant role of CDAT application in providing relevant information for an effective decision support system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super cyclone amphan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm surge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flood mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sar</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sentinel-1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">google earth engine.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Aysha Akter</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of the Civil Engineering Forum</subfield><subfield code="d">Universitas Gadjah Mada, 2017</subfield><subfield code="g">7(2021), 3, Seite 267-278</subfield><subfield code="w">(DE-627)1760644285</subfield><subfield code="x">25495925</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:267-278</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22146/jcef.64497</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e72e772082c54689a18a3b57e5d35c53</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://jurnal.ugm.ac.id/jcef/article/view/64497</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2581-1037</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2549-5925</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="h">267-278</subfield></datafield></record></collection>
|
score |
7.4022093 |