Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process
This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i<...
Ausführliche Beschreibung
Autor*in: |
Seunghyun Kim [verfasserIn] Osung Kwon [verfasserIn] Hojeong Ryu [verfasserIn] Sungjun Kim [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 11(2021), 5, p 772 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:5, p 772 |
Links: |
---|
DOI / URN: |
10.3390/met11050772 |
---|
Katalog-ID: |
DOAJ059174935 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059174935 | ||
003 | DE-627 | ||
005 | 20240412181937.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met11050772 |2 doi | |
035 | |a (DE-627)DOAJ059174935 | ||
035 | |a (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Seunghyun Kim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. | ||
650 | 4 | |a neuromorphic system | |
650 | 4 | |a synaptic device | |
650 | 4 | |a resistive switching | |
650 | 4 | |a metal oxides | |
650 | 4 | |a bilayer | |
650 | 4 | |a neuromorphic simulation | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Osung Kwon |e verfasserin |4 aut | |
700 | 0 | |a Hojeong Ryu |e verfasserin |4 aut | |
700 | 0 | |a Sungjun Kim |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 11(2021), 5, p 772 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:5, p 772 |
856 | 4 | 0 | |u https://doi.org/10.3390/met11050772 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/11/5/772 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 5, p 772 |
author_variant |
s k sk o k ok h r hr s k sk |
---|---|
matchkey_str |
article:20754701:2021----::mrvdyatceierprisffliuxuiilcrcnihyoeslcnu |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TN |
publishDate |
2021 |
allfields |
10.3390/met11050772 doi (DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 DE-627 ger DE-627 rakwb eng TN1-997 Seunghyun Kim verfasserin aut Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy Osung Kwon verfasserin aut Hojeong Ryu verfasserin aut Sungjun Kim verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 772 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 772 https://doi.org/10.3390/met11050772 kostenfrei https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 kostenfrei https://www.mdpi.com/2075-4701/11/5/772 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 772 |
spelling |
10.3390/met11050772 doi (DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 DE-627 ger DE-627 rakwb eng TN1-997 Seunghyun Kim verfasserin aut Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy Osung Kwon verfasserin aut Hojeong Ryu verfasserin aut Sungjun Kim verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 772 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 772 https://doi.org/10.3390/met11050772 kostenfrei https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 kostenfrei https://www.mdpi.com/2075-4701/11/5/772 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 772 |
allfields_unstemmed |
10.3390/met11050772 doi (DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 DE-627 ger DE-627 rakwb eng TN1-997 Seunghyun Kim verfasserin aut Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy Osung Kwon verfasserin aut Hojeong Ryu verfasserin aut Sungjun Kim verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 772 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 772 https://doi.org/10.3390/met11050772 kostenfrei https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 kostenfrei https://www.mdpi.com/2075-4701/11/5/772 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 772 |
allfieldsGer |
10.3390/met11050772 doi (DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 DE-627 ger DE-627 rakwb eng TN1-997 Seunghyun Kim verfasserin aut Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy Osung Kwon verfasserin aut Hojeong Ryu verfasserin aut Sungjun Kim verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 772 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 772 https://doi.org/10.3390/met11050772 kostenfrei https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 kostenfrei https://www.mdpi.com/2075-4701/11/5/772 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 772 |
allfieldsSound |
10.3390/met11050772 doi (DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 DE-627 ger DE-627 rakwb eng TN1-997 Seunghyun Kim verfasserin aut Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy Osung Kwon verfasserin aut Hojeong Ryu verfasserin aut Sungjun Kim verfasserin aut In Metals MDPI AG, 2012 11(2021), 5, p 772 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:11 year:2021 number:5, p 772 https://doi.org/10.3390/met11050772 kostenfrei https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 kostenfrei https://www.mdpi.com/2075-4701/11/5/772 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 5, p 772 |
language |
English |
source |
In Metals 11(2021), 5, p 772 volume:11 year:2021 number:5, p 772 |
sourceStr |
In Metals 11(2021), 5, p 772 volume:11 year:2021 number:5, p 772 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Seunghyun Kim @@aut@@ Osung Kwon @@aut@@ Hojeong Ryu @@aut@@ Sungjun Kim @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ059174935 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059174935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412181937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met11050772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059174935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Seunghyun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal oxides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bilayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Osung Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hojeong Ryu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sungjun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 5, p 772</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 772</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met11050772</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/11/5/772</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 772</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Seunghyun Kim |
spellingShingle |
Seunghyun Kim misc TN1-997 misc neuromorphic system misc synaptic device misc resistive switching misc metal oxides misc bilayer misc neuromorphic simulation misc Mining engineering. Metallurgy Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
authorStr |
Seunghyun Kim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process neuromorphic system synaptic device resistive switching metal oxides bilayer neuromorphic simulation |
topic |
misc TN1-997 misc neuromorphic system misc synaptic device misc resistive switching misc metal oxides misc bilayer misc neuromorphic simulation misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc neuromorphic system misc synaptic device misc resistive switching misc metal oxides misc bilayer misc neuromorphic simulation misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc neuromorphic system misc synaptic device misc resistive switching misc metal oxides misc bilayer misc neuromorphic simulation misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
ctrlnum |
(DE-627)DOAJ059174935 (DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55 |
title_full |
Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
author_sort |
Seunghyun Kim |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Seunghyun Kim Osung Kwon Hojeong Ryu Sungjun Kim |
container_volume |
11 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Seunghyun Kim |
doi_str_mv |
10.3390/met11050772 |
author2-role |
verfasserin |
title_sort |
improved synaptic device properties of hfalo<i<<sub<x</sub<</i< dielectric on highly doped silicon substrate by partial reset process |
callnumber |
TN1-997 |
title_auth |
Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
abstract |
This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. |
abstractGer |
This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. |
abstract_unstemmed |
This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5, p 772 |
title_short |
Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process |
url |
https://doi.org/10.3390/met11050772 https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55 https://www.mdpi.com/2075-4701/11/5/772 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Osung Kwon Hojeong Ryu Sungjun Kim |
author2Str |
Osung Kwon Hojeong Ryu Sungjun Kim |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met11050772 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T22:10:39.302Z |
_version_ |
1803597527702831104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059174935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412181937.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met11050772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059174935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ997c25ae15384333a1dfe349ee0c3b55</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Seunghyun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Synaptic Device Properties of HfAlO<i<<sub<x</sub<</i< Dielectric on Highly Doped Silicon Substrate by Partial Reset Process</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlO<i<<sub<x</sub<</i<-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlO<i<<sub<x</sub<</i< film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlO<i<<sub<x</sub<</i</Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synaptic device</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resistive switching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metal oxides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bilayer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neuromorphic simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Osung Kwon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hojeong Ryu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sungjun Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">11(2021), 5, p 772</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5, p 772</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met11050772</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/997c25ae15384333a1dfe349ee0c3b55</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/11/5/772</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">5, p 772</subfield></datafield></record></collection>
|
score |
7.4013557 |