Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary
Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tens...
Ausführliche Beschreibung
Autor*in: |
A. Rauf [verfasserIn] A.A. Zafar [verfasserIn] I.A. Mirza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Alexandria Engineering Journal - Elsevier, 2016, 54(2015), 4, Seite 973-979 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2015 ; number:4 ; pages:973-979 |
Links: |
---|
DOI / URN: |
10.1016/j.aej.2015.09.001 |
---|
Katalog-ID: |
DOAJ059300329 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059300329 | ||
003 | DE-627 | ||
005 | 20230502085924.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aej.2015.09.001 |2 doi | |
035 | |a (DE-627)DOAJ059300329 | ||
035 | |a (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
100 | 0 | |a A. Rauf |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. | ||
650 | 4 | |a Oldroyd-B fluid | |
650 | 4 | |a Exact solutions | |
650 | 4 | |a Integral transform | |
650 | 4 | |a Velocity field | |
650 | 4 | |a Shear stress | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
700 | 0 | |a A.A. Zafar |e verfasserin |4 aut | |
700 | 0 | |a I.A. Mirza |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Alexandria Engineering Journal |d Elsevier, 2016 |g 54(2015), 4, Seite 973-979 |w (DE-627)669887609 |w (DE-600)2631413-7 |x 20902670 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2015 |g number:4 |g pages:973-979 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.aej.2015.09.001 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1110016815001374 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1110-0168 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 54 |j 2015 |e 4 |h 973-979 |
author_variant |
a r ar a z az i m im |
---|---|
matchkey_str |
article:20902670:2015----::ntayoainllwoaododfuduttn |
hierarchy_sort_str |
2015 |
callnumber-subject-code |
TA |
publishDate |
2015 |
allfields |
10.1016/j.aej.2015.09.001 doi (DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc DE-627 ger DE-627 rakwb eng TA1-2040 A. Rauf verfasserin aut Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) A.A. Zafar verfasserin aut I.A. Mirza verfasserin aut In Alexandria Engineering Journal Elsevier, 2016 54(2015), 4, Seite 973-979 (DE-627)669887609 (DE-600)2631413-7 20902670 nnns volume:54 year:2015 number:4 pages:973-979 https://doi.org/10.1016/j.aej.2015.09.001 kostenfrei https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc kostenfrei http://www.sciencedirect.com/science/article/pii/S1110016815001374 kostenfrei https://doaj.org/toc/1110-0168 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 54 2015 4 973-979 |
spelling |
10.1016/j.aej.2015.09.001 doi (DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc DE-627 ger DE-627 rakwb eng TA1-2040 A. Rauf verfasserin aut Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) A.A. Zafar verfasserin aut I.A. Mirza verfasserin aut In Alexandria Engineering Journal Elsevier, 2016 54(2015), 4, Seite 973-979 (DE-627)669887609 (DE-600)2631413-7 20902670 nnns volume:54 year:2015 number:4 pages:973-979 https://doi.org/10.1016/j.aej.2015.09.001 kostenfrei https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc kostenfrei http://www.sciencedirect.com/science/article/pii/S1110016815001374 kostenfrei https://doaj.org/toc/1110-0168 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 54 2015 4 973-979 |
allfields_unstemmed |
10.1016/j.aej.2015.09.001 doi (DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc DE-627 ger DE-627 rakwb eng TA1-2040 A. Rauf verfasserin aut Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) A.A. Zafar verfasserin aut I.A. Mirza verfasserin aut In Alexandria Engineering Journal Elsevier, 2016 54(2015), 4, Seite 973-979 (DE-627)669887609 (DE-600)2631413-7 20902670 nnns volume:54 year:2015 number:4 pages:973-979 https://doi.org/10.1016/j.aej.2015.09.001 kostenfrei https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc kostenfrei http://www.sciencedirect.com/science/article/pii/S1110016815001374 kostenfrei https://doaj.org/toc/1110-0168 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 54 2015 4 973-979 |
allfieldsGer |
10.1016/j.aej.2015.09.001 doi (DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc DE-627 ger DE-627 rakwb eng TA1-2040 A. Rauf verfasserin aut Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) A.A. Zafar verfasserin aut I.A. Mirza verfasserin aut In Alexandria Engineering Journal Elsevier, 2016 54(2015), 4, Seite 973-979 (DE-627)669887609 (DE-600)2631413-7 20902670 nnns volume:54 year:2015 number:4 pages:973-979 https://doi.org/10.1016/j.aej.2015.09.001 kostenfrei https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc kostenfrei http://www.sciencedirect.com/science/article/pii/S1110016815001374 kostenfrei https://doaj.org/toc/1110-0168 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 54 2015 4 973-979 |
allfieldsSound |
10.1016/j.aej.2015.09.001 doi (DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc DE-627 ger DE-627 rakwb eng TA1-2040 A. Rauf verfasserin aut Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) A.A. Zafar verfasserin aut I.A. Mirza verfasserin aut In Alexandria Engineering Journal Elsevier, 2016 54(2015), 4, Seite 973-979 (DE-627)669887609 (DE-600)2631413-7 20902670 nnns volume:54 year:2015 number:4 pages:973-979 https://doi.org/10.1016/j.aej.2015.09.001 kostenfrei https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc kostenfrei http://www.sciencedirect.com/science/article/pii/S1110016815001374 kostenfrei https://doaj.org/toc/1110-0168 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 54 2015 4 973-979 |
language |
English |
source |
In Alexandria Engineering Journal 54(2015), 4, Seite 973-979 volume:54 year:2015 number:4 pages:973-979 |
sourceStr |
In Alexandria Engineering Journal 54(2015), 4, Seite 973-979 volume:54 year:2015 number:4 pages:973-979 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress Engineering (General). Civil engineering (General) |
isfreeaccess_bool |
true |
container_title |
Alexandria Engineering Journal |
authorswithroles_txt_mv |
A. Rauf @@aut@@ A.A. Zafar @@aut@@ I.A. Mirza @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
669887609 |
id |
DOAJ059300329 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059300329</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aej.2015.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059300329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">A. Rauf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldroyd-B fluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear stress</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A.A. Zafar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I.A. Mirza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Alexandria Engineering Journal</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">54(2015), 4, Seite 973-979</subfield><subfield code="w">(DE-627)669887609</subfield><subfield code="w">(DE-600)2631413-7</subfield><subfield code="x">20902670</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:973-979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aej.2015.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1110016815001374</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1110-0168</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="h">973-979</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
A. Rauf |
spellingShingle |
A. Rauf misc TA1-2040 misc Oldroyd-B fluid misc Exact solutions misc Integral transform misc Velocity field misc Shear stress misc Engineering (General). Civil engineering (General) Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
authorStr |
A. Rauf |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)669887609 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20902670 |
topic_title |
TA1-2040 Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary Oldroyd-B fluid Exact solutions Integral transform Velocity field Shear stress |
topic |
misc TA1-2040 misc Oldroyd-B fluid misc Exact solutions misc Integral transform misc Velocity field misc Shear stress misc Engineering (General). Civil engineering (General) |
topic_unstemmed |
misc TA1-2040 misc Oldroyd-B fluid misc Exact solutions misc Integral transform misc Velocity field misc Shear stress misc Engineering (General). Civil engineering (General) |
topic_browse |
misc TA1-2040 misc Oldroyd-B fluid misc Exact solutions misc Integral transform misc Velocity field misc Shear stress misc Engineering (General). Civil engineering (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Alexandria Engineering Journal |
hierarchy_parent_id |
669887609 |
hierarchy_top_title |
Alexandria Engineering Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)669887609 (DE-600)2631413-7 |
title |
Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
ctrlnum |
(DE-627)DOAJ059300329 (DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc |
title_full |
Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
author_sort |
A. Rauf |
journal |
Alexandria Engineering Journal |
journalStr |
Alexandria Engineering Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
973 |
author_browse |
A. Rauf A.A. Zafar I.A. Mirza |
container_volume |
54 |
class |
TA1-2040 |
format_se |
Elektronische Aufsätze |
author-letter |
A. Rauf |
doi_str_mv |
10.1016/j.aej.2015.09.001 |
author2-role |
verfasserin |
title_sort |
unsteady rotational flows of an oldroyd-b fluid due to tension on the boundary |
callnumber |
TA1-2040 |
title_auth |
Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
abstract |
Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. |
abstractGer |
Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. |
abstract_unstemmed |
Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary |
url |
https://doi.org/10.1016/j.aej.2015.09.001 https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc http://www.sciencedirect.com/science/article/pii/S1110016815001374 https://doaj.org/toc/1110-0168 |
remote_bool |
true |
author2 |
A.A. Zafar I.A. Mirza |
author2Str |
A.A. Zafar I.A. Mirza |
ppnlink |
669887609 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aej.2015.09.001 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T22:48:17.906Z |
_version_ |
1803599896113053696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059300329</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502085924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aej.2015.09.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059300329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ18cdbc1f8426418a8ed1a8560dddedcc</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">A. Rauf</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which is given on the cylinder surface. As a novelty, authors used in this paper the governing equation related to the tension field. The closed forms of the shear stress and velocity fields corresponding to the flow problems are obtained by means of the integral transforms method. Expressions for the azimuthal tension and fluid velocity were written as sums between the “permanent component” (the steady-state component) and the transient component. By customizing values of parameters from the mathematical model were obtained the corresponding solutions of other types of fluids, namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress, the fluid behavior has been analyzed. The necessary time to achieve the “steady-state” was, also, determined.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oldroyd-B fluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Velocity field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear stress</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">A.A. Zafar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">I.A. Mirza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Alexandria Engineering Journal</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">54(2015), 4, Seite 973-979</subfield><subfield code="w">(DE-627)669887609</subfield><subfield code="w">(DE-600)2631413-7</subfield><subfield code="x">20902670</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:973-979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.aej.2015.09.001</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/18cdbc1f8426418a8ed1a8560dddedcc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1110016815001374</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1110-0168</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="h">973-979</subfield></datafield></record></collection>
|
score |
7.400962 |