Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients
Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources p...
Ausführliche Beschreibung
Autor*in: |
Neeraj Kumar [verfasserIn] Shi-ang Qi [verfasserIn] Li-Hao Kuan [verfasserIn] Weijie Sun [verfasserIn] Jianfei Zhang [verfasserIn] Russell Greiner [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 12(2022), 1, Seite 11 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:1 ; pages:11 |
Links: |
---|
DOI / URN: |
10.1038/s41598-022-08601-6 |
---|
Katalog-ID: |
DOAJ05931270X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05931270X | ||
003 | DE-627 | ||
005 | 20230308232757.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-022-08601-6 |2 doi | |
035 | |a (DE-627)DOAJ05931270X | ||
035 | |a (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Neeraj Kumar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Shi-ang Qi |e verfasserin |4 aut | |
700 | 0 | |a Li-Hao Kuan |e verfasserin |4 aut | |
700 | 0 | |a Weijie Sun |e verfasserin |4 aut | |
700 | 0 | |a Jianfei Zhang |e verfasserin |4 aut | |
700 | 0 | |a Russell Greiner |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 12(2022), 1, Seite 11 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:1 |g pages:11 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-08601-6 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-022-08601-6 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 1 |h 11 |
author_variant |
n k nk s a q saq l h k lhk w s ws j z jz r g rg |
---|---|
matchkey_str |
article:20452322:2022----::erigcuaeesnlzduvvloesopeitnhsiadshren |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1038/s41598-022-08601-6 doi (DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb DE-627 ger DE-627 rakwb eng Neeraj Kumar verfasserin aut Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. Medicine R Science Q Shi-ang Qi verfasserin aut Li-Hao Kuan verfasserin aut Weijie Sun verfasserin aut Jianfei Zhang verfasserin aut Russell Greiner verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb kostenfrei https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
spelling |
10.1038/s41598-022-08601-6 doi (DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb DE-627 ger DE-627 rakwb eng Neeraj Kumar verfasserin aut Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. Medicine R Science Q Shi-ang Qi verfasserin aut Li-Hao Kuan verfasserin aut Weijie Sun verfasserin aut Jianfei Zhang verfasserin aut Russell Greiner verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb kostenfrei https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfields_unstemmed |
10.1038/s41598-022-08601-6 doi (DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb DE-627 ger DE-627 rakwb eng Neeraj Kumar verfasserin aut Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. Medicine R Science Q Shi-ang Qi verfasserin aut Li-Hao Kuan verfasserin aut Weijie Sun verfasserin aut Jianfei Zhang verfasserin aut Russell Greiner verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb kostenfrei https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfieldsGer |
10.1038/s41598-022-08601-6 doi (DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb DE-627 ger DE-627 rakwb eng Neeraj Kumar verfasserin aut Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. Medicine R Science Q Shi-ang Qi verfasserin aut Li-Hao Kuan verfasserin aut Weijie Sun verfasserin aut Jianfei Zhang verfasserin aut Russell Greiner verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb kostenfrei https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
allfieldsSound |
10.1038/s41598-022-08601-6 doi (DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb DE-627 ger DE-627 rakwb eng Neeraj Kumar verfasserin aut Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. Medicine R Science Q Shi-ang Qi verfasserin aut Li-Hao Kuan verfasserin aut Weijie Sun verfasserin aut Jianfei Zhang verfasserin aut Russell Greiner verfasserin aut In Scientific Reports Nature Portfolio, 2011 12(2022), 1, Seite 11 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:12 year:2022 number:1 pages:11 https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb kostenfrei https://doi.org/10.1038/s41598-022-08601-6 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 1 11 |
language |
English |
source |
In Scientific Reports 12(2022), 1, Seite 11 volume:12 year:2022 number:1 pages:11 |
sourceStr |
In Scientific Reports 12(2022), 1, Seite 11 volume:12 year:2022 number:1 pages:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Neeraj Kumar @@aut@@ Shi-ang Qi @@aut@@ Li-Hao Kuan @@aut@@ Weijie Sun @@aut@@ Jianfei Zhang @@aut@@ Russell Greiner @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ05931270X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05931270X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308232757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-08601-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05931270X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neeraj Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-ang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li-Hao Kuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weijie Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 11</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08601-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08601-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
author |
Neeraj Kumar |
spellingShingle |
Neeraj Kumar misc Medicine misc R misc Science misc Q Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
authorStr |
Neeraj Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
ctrlnum |
(DE-627)DOAJ05931270X (DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb |
title_full |
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
author_sort |
Neeraj Kumar |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
11 |
author_browse |
Neeraj Kumar Shi-ang Qi Li-Hao Kuan Weijie Sun Jianfei Zhang Russell Greiner |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Neeraj Kumar |
doi_str_mv |
10.1038/s41598-022-08601-6 |
author2-role |
verfasserin |
title_sort |
learning accurate personalized survival models for predicting hospital discharge and mortality of covid-19 patients |
title_auth |
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
abstract |
Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. |
abstractGer |
Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. |
abstract_unstemmed |
Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients |
url |
https://doi.org/10.1038/s41598-022-08601-6 https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Shi-ang Qi Li-Hao Kuan Weijie Sun Jianfei Zhang Russell Greiner |
author2Str |
Shi-ang Qi Li-Hao Kuan Weijie Sun Jianfei Zhang Russell Greiner |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-022-08601-6 |
up_date |
2024-07-03T22:52:12.768Z |
_version_ |
1803600142291435520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05931270X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308232757.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-022-08601-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05931270X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ700a69e27d384b7784049fde9feb0ccb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neeraj Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning accurate personalized survival models for predicting hospital discharge and mortality of COVID-19 patients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Since it emerged in December of 2019, COVID-19 has placed a huge burden on medical care in countries throughout the world, as it led to a huge number of hospitalizations and mortalities. Many medical centers were overloaded, as their intensive care units and auxiliary protection resources proved insufficient, which made the effective allocation of medical resources an urgent matter. This study describes learned survival prediction models that could help medical professionals make effective decisions regarding patient triage and resource allocation. We created multiple data subsets from a publicly available COVID-19 epidemiological dataset to evaluate the effectiveness of various combinations of covariates—age, sex, geographic location, and chronic disease status—in learning survival models (here, “Individual Survival Distributions”; ISDs) for hospital discharge and also for death events. We then supplemented our datasets with demographic and economic information to obtain potentially more accurate survival models. Our extensive experiments compared several ISD models, using various measures. These results show that the “gradient boosting Cox machine” algorithm outperformed the competing techniques, in terms of these performance evaluation metrics, for predicting both an individual’s likelihood of hospital discharge and COVID-19 mortality. Our curated datasets and code base are available at our Github repository for reproducing the results reported in this paper and for supporting future research.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-ang Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Li-Hao Kuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Weijie Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianfei Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Russell Greiner</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">12(2022), 1, Seite 11</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08601-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/700a69e27d384b7784049fde9feb0ccb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-022-08601-6</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">11</subfield></datafield></record></collection>
|
score |
7.402356 |