VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD
The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR confer...
Ausführliche Beschreibung
Autor*in: |
Bryce Paul [verfasserIn] Hosking Glynn [verfasserIn] Knight Martin [verfasserIn] Lindley Ben [verfasserIn] Powney David [verfasserIn] Schneidesch Christophe [verfasserIn] Slosse Nicolas [verfasserIn] Taylor Tom [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: EPJ Web of Conferences - EDP Sciences, 2010, 247, p 02016(2021) |
---|---|
Übergeordnetes Werk: |
volume:247, p 02016 ; year:2021 |
Links: |
---|
DOI / URN: |
10.1051/epjconf/202124702016 |
---|
Katalog-ID: |
DOAJ059490500 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059490500 | ||
003 | DE-627 | ||
005 | 20230308233840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1051/epjconf/202124702016 |2 doi | |
035 | |a (DE-627)DOAJ059490500 | ||
035 | |a (DE-599)DOAJ506295ce623144dc9db91ed707f38566 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Bryce Paul |e verfasserin |4 aut | |
245 | 1 | 0 | |a VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. | ||
650 | 4 | |a wims | |
650 | 4 | |a panther | |
650 | 4 | |a core | |
650 | 4 | |a validation | |
650 | 4 | |a embedded | |
653 | 0 | |a Physics | |
700 | 0 | |a Hosking Glynn |e verfasserin |4 aut | |
700 | 0 | |a Knight Martin |e verfasserin |4 aut | |
700 | 0 | |a Lindley Ben |e verfasserin |4 aut | |
700 | 0 | |a Powney David |e verfasserin |4 aut | |
700 | 0 | |a Schneidesch Christophe |e verfasserin |4 aut | |
700 | 0 | |a Slosse Nicolas |e verfasserin |4 aut | |
700 | 0 | |a Taylor Tom |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t EPJ Web of Conferences |d EDP Sciences, 2010 |g 247, p 02016(2021) |w (DE-627)647306611 |w (DE-600)2595425-8 |x 2100014X |7 nnns |
773 | 1 | 8 | |g volume:247, p 02016 |g year:2021 |
856 | 4 | 0 | |u https://doi.org/10.1051/epjconf/202124702016 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/506295ce623144dc9db91ed707f38566 |z kostenfrei |
856 | 4 | 0 | |u https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2100-014X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 247, p 02016 |j 2021 |
author_variant |
b p bp h g hg k m km l b lb p d pd s c sc s n sn t t tt |
---|---|
matchkey_str |
article:2100014X:2021----::aiainfhwmpnhrmeddu |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1051/epjconf/202124702016 doi (DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 DE-627 ger DE-627 rakwb eng QC1-999 Bryce Paul verfasserin aut VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. wims panther core validation embedded Physics Hosking Glynn verfasserin aut Knight Martin verfasserin aut Lindley Ben verfasserin aut Powney David verfasserin aut Schneidesch Christophe verfasserin aut Slosse Nicolas verfasserin aut Taylor Tom verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 247, p 02016(2021) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:247, p 02016 year:2021 https://doi.org/10.1051/epjconf/202124702016 kostenfrei https://doaj.org/article/506295ce623144dc9db91ed707f38566 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 247, p 02016 2021 |
spelling |
10.1051/epjconf/202124702016 doi (DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 DE-627 ger DE-627 rakwb eng QC1-999 Bryce Paul verfasserin aut VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. wims panther core validation embedded Physics Hosking Glynn verfasserin aut Knight Martin verfasserin aut Lindley Ben verfasserin aut Powney David verfasserin aut Schneidesch Christophe verfasserin aut Slosse Nicolas verfasserin aut Taylor Tom verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 247, p 02016(2021) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:247, p 02016 year:2021 https://doi.org/10.1051/epjconf/202124702016 kostenfrei https://doaj.org/article/506295ce623144dc9db91ed707f38566 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 247, p 02016 2021 |
allfields_unstemmed |
10.1051/epjconf/202124702016 doi (DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 DE-627 ger DE-627 rakwb eng QC1-999 Bryce Paul verfasserin aut VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. wims panther core validation embedded Physics Hosking Glynn verfasserin aut Knight Martin verfasserin aut Lindley Ben verfasserin aut Powney David verfasserin aut Schneidesch Christophe verfasserin aut Slosse Nicolas verfasserin aut Taylor Tom verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 247, p 02016(2021) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:247, p 02016 year:2021 https://doi.org/10.1051/epjconf/202124702016 kostenfrei https://doaj.org/article/506295ce623144dc9db91ed707f38566 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 247, p 02016 2021 |
allfieldsGer |
10.1051/epjconf/202124702016 doi (DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 DE-627 ger DE-627 rakwb eng QC1-999 Bryce Paul verfasserin aut VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. wims panther core validation embedded Physics Hosking Glynn verfasserin aut Knight Martin verfasserin aut Lindley Ben verfasserin aut Powney David verfasserin aut Schneidesch Christophe verfasserin aut Slosse Nicolas verfasserin aut Taylor Tom verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 247, p 02016(2021) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:247, p 02016 year:2021 https://doi.org/10.1051/epjconf/202124702016 kostenfrei https://doaj.org/article/506295ce623144dc9db91ed707f38566 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 247, p 02016 2021 |
allfieldsSound |
10.1051/epjconf/202124702016 doi (DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 DE-627 ger DE-627 rakwb eng QC1-999 Bryce Paul verfasserin aut VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. wims panther core validation embedded Physics Hosking Glynn verfasserin aut Knight Martin verfasserin aut Lindley Ben verfasserin aut Powney David verfasserin aut Schneidesch Christophe verfasserin aut Slosse Nicolas verfasserin aut Taylor Tom verfasserin aut In EPJ Web of Conferences EDP Sciences, 2010 247, p 02016(2021) (DE-627)647306611 (DE-600)2595425-8 2100014X nnns volume:247, p 02016 year:2021 https://doi.org/10.1051/epjconf/202124702016 kostenfrei https://doaj.org/article/506295ce623144dc9db91ed707f38566 kostenfrei https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf kostenfrei https://doaj.org/toc/2100-014X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 247, p 02016 2021 |
language |
English |
source |
In EPJ Web of Conferences 247, p 02016(2021) volume:247, p 02016 year:2021 |
sourceStr |
In EPJ Web of Conferences 247, p 02016(2021) volume:247, p 02016 year:2021 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wims panther core validation embedded Physics |
isfreeaccess_bool |
true |
container_title |
EPJ Web of Conferences |
authorswithroles_txt_mv |
Bryce Paul @@aut@@ Hosking Glynn @@aut@@ Knight Martin @@aut@@ Lindley Ben @@aut@@ Powney David @@aut@@ Schneidesch Christophe @@aut@@ Slosse Nicolas @@aut@@ Taylor Tom @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
647306611 |
id |
DOAJ059490500 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059490500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308233840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/epjconf/202124702016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059490500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ506295ce623144dc9db91ed707f38566</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bryce Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wims</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">panther</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">core</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">validation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">embedded</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hosking Glynn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Knight Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lindley Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Powney David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Schneidesch Christophe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Slosse Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taylor Tom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EPJ Web of Conferences</subfield><subfield code="d">EDP Sciences, 2010</subfield><subfield code="g">247, p 02016(2021)</subfield><subfield code="w">(DE-627)647306611</subfield><subfield code="w">(DE-600)2595425-8</subfield><subfield code="x">2100014X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:247, p 02016</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/epjconf/202124702016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/506295ce623144dc9db91ed707f38566</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2100-014X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">247, p 02016</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Bryce Paul |
spellingShingle |
Bryce Paul misc QC1-999 misc wims misc panther misc core misc validation misc embedded misc Physics VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
authorStr |
Bryce Paul |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)647306611 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
2100014X |
topic_title |
QC1-999 VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD wims panther core validation embedded |
topic |
misc QC1-999 misc wims misc panther misc core misc validation misc embedded misc Physics |
topic_unstemmed |
misc QC1-999 misc wims misc panther misc core misc validation misc embedded misc Physics |
topic_browse |
misc QC1-999 misc wims misc panther misc core misc validation misc embedded misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EPJ Web of Conferences |
hierarchy_parent_id |
647306611 |
hierarchy_top_title |
EPJ Web of Conferences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)647306611 (DE-600)2595425-8 |
title |
VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
ctrlnum |
(DE-627)DOAJ059490500 (DE-599)DOAJ506295ce623144dc9db91ed707f38566 |
title_full |
VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
author_sort |
Bryce Paul |
journal |
EPJ Web of Conferences |
journalStr |
EPJ Web of Conferences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Bryce Paul Hosking Glynn Knight Martin Lindley Ben Powney David Schneidesch Christophe Slosse Nicolas Taylor Tom |
container_volume |
247, p 02016 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Bryce Paul |
doi_str_mv |
10.1051/epjconf/202124702016 |
author2-role |
verfasserin |
title_sort |
validation of the wims/panther embedded supercell method |
callnumber |
QC1-999 |
title_auth |
VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
abstract |
The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. |
abstractGer |
The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. |
abstract_unstemmed |
The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD |
url |
https://doi.org/10.1051/epjconf/202124702016 https://doaj.org/article/506295ce623144dc9db91ed707f38566 https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf https://doaj.org/toc/2100-014X |
remote_bool |
true |
author2 |
Hosking Glynn Knight Martin Lindley Ben Powney David Schneidesch Christophe Slosse Nicolas Taylor Tom |
author2Str |
Hosking Glynn Knight Martin Lindley Ben Powney David Schneidesch Christophe Slosse Nicolas Taylor Tom |
ppnlink |
647306611 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1051/epjconf/202124702016 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T23:42:34.242Z |
_version_ |
1803603310536556544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059490500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308233840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/epjconf/202124702016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059490500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ506295ce623144dc9db91ed707f38566</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bryce Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations. This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon. The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wims</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">panther</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">core</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">validation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">embedded</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hosking Glynn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Knight Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lindley Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Powney David</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Schneidesch Christophe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Slosse Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taylor Tom</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">EPJ Web of Conferences</subfield><subfield code="d">EDP Sciences, 2010</subfield><subfield code="g">247, p 02016(2021)</subfield><subfield code="w">(DE-627)647306611</subfield><subfield code="w">(DE-600)2595425-8</subfield><subfield code="x">2100014X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:247, p 02016</subfield><subfield code="g">year:2021</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/epjconf/202124702016</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/506295ce623144dc9db91ed707f38566</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_02016.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2100-014X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">247, p 02016</subfield><subfield code="j">2021</subfield></datafield></record></collection>
|
score |
7.402916 |