The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations
In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR f...
Ausführliche Beschreibung
Autor*in: |
Mohammad Rezaiee-Pajand [verfasserIn] J. Alamatian [verfasserIn] Hasine Rezaee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Iranian Journal of Numerical Analysis and Optimization - Ferdowsi University of Mashhad, 2019, 7(2017), 2, Seite 65-86 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2017 ; number:2 ; pages:65-86 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.22067/ijnao.v7i2.60552 |
---|
Katalog-ID: |
DOAJ059615222 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059615222 | ||
003 | DE-627 | ||
005 | 20230308234504.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.22067/ijnao.v7i2.60552 |2 doi | |
035 | |a (DE-627)DOAJ059615222 | ||
035 | |a (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a T57-57.97 | |
100 | 0 | |a Mohammad Rezaiee-Pajand |e verfasserin |4 aut | |
245 | 1 | 4 | |a The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. | ||
650 | 4 | |a dynamic relaxation method | |
650 | 4 | |a formulation | |
650 | 4 | |a solver | |
650 | 4 | |a review | |
650 | 4 | |a iterative technique | |
650 | 4 | |a state of the art | |
653 | 0 | |a Applied mathematics. Quantitative methods | |
700 | 0 | |a J. Alamatian |e verfasserin |4 aut | |
700 | 0 | |a Hasine Rezaee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Iranian Journal of Numerical Analysis and Optimization |d Ferdowsi University of Mashhad, 2019 |g 7(2017), 2, Seite 65-86 |w (DE-627)1680647830 |x 24236969 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2017 |g number:2 |g pages:65-86 |
856 | 4 | 0 | |u https://doi.org/10.22067/ijnao.v7i2.60552 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 |z kostenfrei |
856 | 4 | 0 | |u https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2423-6977 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2423-6969 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2017 |e 2 |h 65-86 |
author_variant |
m r p mrp j a ja h r hr |
---|---|
matchkey_str |
article:24236969:2017----::hsaefhatnyairlxtomtososrcuamca |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
T |
publishDate |
2017 |
allfields |
10.22067/ijnao.v7i2.60552 doi (DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 DE-627 ger DE-627 rakwb eng T57-57.97 Mohammad Rezaiee-Pajand verfasserin aut The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods J. Alamatian verfasserin aut Hasine Rezaee verfasserin aut In Iranian Journal of Numerical Analysis and Optimization Ferdowsi University of Mashhad, 2019 7(2017), 2, Seite 65-86 (DE-627)1680647830 24236969 nnns volume:7 year:2017 number:2 pages:65-86 https://doi.org/10.22067/ijnao.v7i2.60552 kostenfrei https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 kostenfrei https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf kostenfrei https://doaj.org/toc/2423-6977 Journal toc kostenfrei https://doaj.org/toc/2423-6969 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2 65-86 |
spelling |
10.22067/ijnao.v7i2.60552 doi (DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 DE-627 ger DE-627 rakwb eng T57-57.97 Mohammad Rezaiee-Pajand verfasserin aut The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods J. Alamatian verfasserin aut Hasine Rezaee verfasserin aut In Iranian Journal of Numerical Analysis and Optimization Ferdowsi University of Mashhad, 2019 7(2017), 2, Seite 65-86 (DE-627)1680647830 24236969 nnns volume:7 year:2017 number:2 pages:65-86 https://doi.org/10.22067/ijnao.v7i2.60552 kostenfrei https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 kostenfrei https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf kostenfrei https://doaj.org/toc/2423-6977 Journal toc kostenfrei https://doaj.org/toc/2423-6969 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2 65-86 |
allfields_unstemmed |
10.22067/ijnao.v7i2.60552 doi (DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 DE-627 ger DE-627 rakwb eng T57-57.97 Mohammad Rezaiee-Pajand verfasserin aut The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods J. Alamatian verfasserin aut Hasine Rezaee verfasserin aut In Iranian Journal of Numerical Analysis and Optimization Ferdowsi University of Mashhad, 2019 7(2017), 2, Seite 65-86 (DE-627)1680647830 24236969 nnns volume:7 year:2017 number:2 pages:65-86 https://doi.org/10.22067/ijnao.v7i2.60552 kostenfrei https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 kostenfrei https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf kostenfrei https://doaj.org/toc/2423-6977 Journal toc kostenfrei https://doaj.org/toc/2423-6969 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2 65-86 |
allfieldsGer |
10.22067/ijnao.v7i2.60552 doi (DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 DE-627 ger DE-627 rakwb eng T57-57.97 Mohammad Rezaiee-Pajand verfasserin aut The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods J. Alamatian verfasserin aut Hasine Rezaee verfasserin aut In Iranian Journal of Numerical Analysis and Optimization Ferdowsi University of Mashhad, 2019 7(2017), 2, Seite 65-86 (DE-627)1680647830 24236969 nnns volume:7 year:2017 number:2 pages:65-86 https://doi.org/10.22067/ijnao.v7i2.60552 kostenfrei https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 kostenfrei https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf kostenfrei https://doaj.org/toc/2423-6977 Journal toc kostenfrei https://doaj.org/toc/2423-6969 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2 65-86 |
allfieldsSound |
10.22067/ijnao.v7i2.60552 doi (DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 DE-627 ger DE-627 rakwb eng T57-57.97 Mohammad Rezaiee-Pajand verfasserin aut The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods J. Alamatian verfasserin aut Hasine Rezaee verfasserin aut In Iranian Journal of Numerical Analysis and Optimization Ferdowsi University of Mashhad, 2019 7(2017), 2, Seite 65-86 (DE-627)1680647830 24236969 nnns volume:7 year:2017 number:2 pages:65-86 https://doi.org/10.22067/ijnao.v7i2.60552 kostenfrei https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 kostenfrei https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf kostenfrei https://doaj.org/toc/2423-6977 Journal toc kostenfrei https://doaj.org/toc/2423-6969 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2017 2 65-86 |
language |
English |
source |
In Iranian Journal of Numerical Analysis and Optimization 7(2017), 2, Seite 65-86 volume:7 year:2017 number:2 pages:65-86 |
sourceStr |
In Iranian Journal of Numerical Analysis and Optimization 7(2017), 2, Seite 65-86 volume:7 year:2017 number:2 pages:65-86 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
dynamic relaxation method formulation solver review iterative technique state of the art Applied mathematics. Quantitative methods |
isfreeaccess_bool |
true |
container_title |
Iranian Journal of Numerical Analysis and Optimization |
authorswithroles_txt_mv |
Mohammad Rezaiee-Pajand @@aut@@ J. Alamatian @@aut@@ Hasine Rezaee @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
1680647830 |
id |
DOAJ059615222 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059615222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22067/ijnao.v7i2.60552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059615222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Rezaiee-Pajand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic relaxation method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">formulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">review</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state of the art</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Alamatian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hasine Rezaee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iranian Journal of Numerical Analysis and Optimization</subfield><subfield code="d">Ferdowsi University of Mashhad, 2019</subfield><subfield code="g">7(2017), 2, Seite 65-86</subfield><subfield code="w">(DE-627)1680647830</subfield><subfield code="x">24236969</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:65-86</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22067/ijnao.v7i2.60552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2423-6977</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2423-6969</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">65-86</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mohammad Rezaiee-Pajand |
spellingShingle |
Mohammad Rezaiee-Pajand misc T57-57.97 misc dynamic relaxation method misc formulation misc solver misc review misc iterative technique misc state of the art misc Applied mathematics. Quantitative methods The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
authorStr |
Mohammad Rezaiee-Pajand |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1680647830 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
T57-57 |
illustrated |
Not Illustrated |
issn |
24236969 |
topic_title |
T57-57.97 The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations dynamic relaxation method formulation solver review iterative technique state of the art |
topic |
misc T57-57.97 misc dynamic relaxation method misc formulation misc solver misc review misc iterative technique misc state of the art misc Applied mathematics. Quantitative methods |
topic_unstemmed |
misc T57-57.97 misc dynamic relaxation method misc formulation misc solver misc review misc iterative technique misc state of the art misc Applied mathematics. Quantitative methods |
topic_browse |
misc T57-57.97 misc dynamic relaxation method misc formulation misc solver misc review misc iterative technique misc state of the art misc Applied mathematics. Quantitative methods |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Iranian Journal of Numerical Analysis and Optimization |
hierarchy_parent_id |
1680647830 |
hierarchy_top_title |
Iranian Journal of Numerical Analysis and Optimization |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1680647830 |
title |
The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
ctrlnum |
(DE-627)DOAJ059615222 (DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34 |
title_full |
The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
author_sort |
Mohammad Rezaiee-Pajand |
journal |
Iranian Journal of Numerical Analysis and Optimization |
journalStr |
Iranian Journal of Numerical Analysis and Optimization |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
65 |
author_browse |
Mohammad Rezaiee-Pajand J. Alamatian Hasine Rezaee |
container_volume |
7 |
class |
T57-57.97 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohammad Rezaiee-Pajand |
doi_str_mv |
10.22067/ijnao.v7i2.60552 |
author2-role |
verfasserin |
title_sort |
state of the art in dynamic relaxation methods for structural mechanics part 1: formulations |
callnumber |
T57-57.97 |
title_auth |
The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
abstract |
In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. |
abstractGer |
In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. |
abstract_unstemmed |
In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2 |
title_short |
The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations |
url |
https://doi.org/10.22067/ijnao.v7i2.60552 https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34 https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf https://doaj.org/toc/2423-6977 https://doaj.org/toc/2423-6969 |
remote_bool |
true |
author2 |
J. Alamatian Hasine Rezaee |
author2Str |
J. Alamatian Hasine Rezaee |
ppnlink |
1680647830 |
callnumber-subject |
T - General Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.22067/ijnao.v7i2.60552 |
callnumber-a |
T57-57.97 |
up_date |
2024-07-04T00:13:22.499Z |
_version_ |
1803605248574488576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059615222</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234504.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.22067/ijnao.v7i2.60552</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059615222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1b3b6de4ae734c4e8a448730991c4e34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">T57-57.97</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Rezaiee-Pajand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last sixty years, the Dynamic Relaxation methods have evolved significantly. These explicit and iterative procedures are frequently used to solve the linear or nonlinear response of governing equations resulted from structural analyses. In the first part of this study, the common DR formulations are reviewed. Mathematical bases and also physical concepts of these solvers are explained briefly. All the DR parameters, i.e. fictitious mass, fictitious damping, fictitious time step and initial guess are described, as well. Furthermore, solutions of structural problems along with kinetic and viscous damping formulations are discussed. Analyses of the existing studies and suggestions for future research trends are presented. In the second part, the applications of Dynamic Relaxation method in engineering practices are reviewed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamic relaxation method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">formulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">solver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">review</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">state of the art</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applied mathematics. Quantitative methods</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Alamatian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hasine Rezaee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Iranian Journal of Numerical Analysis and Optimization</subfield><subfield code="d">Ferdowsi University of Mashhad, 2019</subfield><subfield code="g">7(2017), 2, Seite 65-86</subfield><subfield code="w">(DE-627)1680647830</subfield><subfield code="x">24236969</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:65-86</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.22067/ijnao.v7i2.60552</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1b3b6de4ae734c4e8a448730991c4e34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ijnao.um.ac.ir/article_24575_c993a459a801bdd6171650a1130226da.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2423-6977</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2423-6969</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="h">65-86</subfield></datafield></record></collection>
|
score |
7.4014473 |