STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, ang...
Ausführliche Beschreibung
Autor*in: |
Isidora Tošić [verfasserIn] David A. Frank [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Neoplasia: An International Journal for Oncology Research - Elsevier, 2008, 23(2021), 12, Seite 1167-1178 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2021 ; number:12 ; pages:1167-1178 |
Links: |
---|
DOI / URN: |
10.1016/j.neo.2021.10.003 |
---|
Katalog-ID: |
DOAJ059634936 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059634936 | ||
003 | DE-627 | ||
005 | 20230308234608.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neo.2021.10.003 |2 doi | |
035 | |a (DE-627)DOAJ059634936 | ||
035 | |a (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Isidora Tošić |e verfasserin |4 aut | |
245 | 1 | 0 | |a STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. | ||
650 | 4 | |a STAT3 transcription factor | |
650 | 4 | |a Protein processing, Post-translational | |
650 | 4 | |a Adenosine triphosphate | |
650 | 4 | |a Lipid metabolism | |
650 | 4 | |a Metabolism | |
650 | 4 | |a Neoplasms | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a David A. Frank |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Neoplasia: An International Journal for Oncology Research |d Elsevier, 2008 |g 23(2021), 12, Seite 1167-1178 |w (DE-627)320468690 |w (DE-600)2008231-9 |x 14765586 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2021 |g number:12 |g pages:1167-1178 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.neo.2021.10.003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1476558621000889 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1476-5586 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2021 |e 12 |h 1167-1178 |
author_variant |
i t it d a f daf |
---|---|
matchkey_str |
article:14765586:2021----::ttaaeitrfnoeicluamtblsptoeiadh |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
RC |
publishDate |
2021 |
allfields |
10.1016/j.neo.2021.10.003 doi (DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 DE-627 ger DE-627 rakwb eng RC254-282 Isidora Tošić verfasserin aut STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens David A. Frank verfasserin aut In Neoplasia: An International Journal for Oncology Research Elsevier, 2008 23(2021), 12, Seite 1167-1178 (DE-627)320468690 (DE-600)2008231-9 14765586 nnns volume:23 year:2021 number:12 pages:1167-1178 https://doi.org/10.1016/j.neo.2021.10.003 kostenfrei https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1476558621000889 kostenfrei https://doaj.org/toc/1476-5586 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2021 12 1167-1178 |
spelling |
10.1016/j.neo.2021.10.003 doi (DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 DE-627 ger DE-627 rakwb eng RC254-282 Isidora Tošić verfasserin aut STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens David A. Frank verfasserin aut In Neoplasia: An International Journal for Oncology Research Elsevier, 2008 23(2021), 12, Seite 1167-1178 (DE-627)320468690 (DE-600)2008231-9 14765586 nnns volume:23 year:2021 number:12 pages:1167-1178 https://doi.org/10.1016/j.neo.2021.10.003 kostenfrei https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1476558621000889 kostenfrei https://doaj.org/toc/1476-5586 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2021 12 1167-1178 |
allfields_unstemmed |
10.1016/j.neo.2021.10.003 doi (DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 DE-627 ger DE-627 rakwb eng RC254-282 Isidora Tošić verfasserin aut STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens David A. Frank verfasserin aut In Neoplasia: An International Journal for Oncology Research Elsevier, 2008 23(2021), 12, Seite 1167-1178 (DE-627)320468690 (DE-600)2008231-9 14765586 nnns volume:23 year:2021 number:12 pages:1167-1178 https://doi.org/10.1016/j.neo.2021.10.003 kostenfrei https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1476558621000889 kostenfrei https://doaj.org/toc/1476-5586 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2021 12 1167-1178 |
allfieldsGer |
10.1016/j.neo.2021.10.003 doi (DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 DE-627 ger DE-627 rakwb eng RC254-282 Isidora Tošić verfasserin aut STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens David A. Frank verfasserin aut In Neoplasia: An International Journal for Oncology Research Elsevier, 2008 23(2021), 12, Seite 1167-1178 (DE-627)320468690 (DE-600)2008231-9 14765586 nnns volume:23 year:2021 number:12 pages:1167-1178 https://doi.org/10.1016/j.neo.2021.10.003 kostenfrei https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1476558621000889 kostenfrei https://doaj.org/toc/1476-5586 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2021 12 1167-1178 |
allfieldsSound |
10.1016/j.neo.2021.10.003 doi (DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 DE-627 ger DE-627 rakwb eng RC254-282 Isidora Tošić verfasserin aut STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens David A. Frank verfasserin aut In Neoplasia: An International Journal for Oncology Research Elsevier, 2008 23(2021), 12, Seite 1167-1178 (DE-627)320468690 (DE-600)2008231-9 14765586 nnns volume:23 year:2021 number:12 pages:1167-1178 https://doi.org/10.1016/j.neo.2021.10.003 kostenfrei https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 kostenfrei http://www.sciencedirect.com/science/article/pii/S1476558621000889 kostenfrei https://doaj.org/toc/1476-5586 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 23 2021 12 1167-1178 |
language |
English |
source |
In Neoplasia: An International Journal for Oncology Research 23(2021), 12, Seite 1167-1178 volume:23 year:2021 number:12 pages:1167-1178 |
sourceStr |
In Neoplasia: An International Journal for Oncology Research 23(2021), 12, Seite 1167-1178 volume:23 year:2021 number:12 pages:1167-1178 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Neoplasia: An International Journal for Oncology Research |
authorswithroles_txt_mv |
Isidora Tošić @@aut@@ David A. Frank @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320468690 |
id |
DOAJ059634936 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059634936</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neo.2021.10.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059634936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Isidora Tošić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STAT3 transcription factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein processing, Post-translational</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adenosine triphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neoplasms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A. Frank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Neoplasia: An International Journal for Oncology Research</subfield><subfield code="d">Elsevier, 2008</subfield><subfield code="g">23(2021), 12, Seite 1167-1178</subfield><subfield code="w">(DE-627)320468690</subfield><subfield code="w">(DE-600)2008231-9</subfield><subfield code="x">14765586</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1167-1178</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neo.2021.10.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1476558621000889</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1476-5586</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">12</subfield><subfield code="h">1167-1178</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Isidora Tošić |
spellingShingle |
Isidora Tošić misc RC254-282 misc STAT3 transcription factor misc Protein processing, Post-translational misc Adenosine triphosphate misc Lipid metabolism misc Metabolism misc Neoplasms misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
authorStr |
Isidora Tošić |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320468690 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
14765586 |
topic_title |
RC254-282 STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications STAT3 transcription factor Protein processing, Post-translational Adenosine triphosphate Lipid metabolism Metabolism Neoplasms |
topic |
misc RC254-282 misc STAT3 transcription factor misc Protein processing, Post-translational misc Adenosine triphosphate misc Lipid metabolism misc Metabolism misc Neoplasms misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc STAT3 transcription factor misc Protein processing, Post-translational misc Adenosine triphosphate misc Lipid metabolism misc Metabolism misc Neoplasms misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc STAT3 transcription factor misc Protein processing, Post-translational misc Adenosine triphosphate misc Lipid metabolism misc Metabolism misc Neoplasms misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neoplasia: An International Journal for Oncology Research |
hierarchy_parent_id |
320468690 |
hierarchy_top_title |
Neoplasia: An International Journal for Oncology Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320468690 (DE-600)2008231-9 |
title |
STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
ctrlnum |
(DE-627)DOAJ059634936 (DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9 |
title_full |
STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
author_sort |
Isidora Tošić |
journal |
Neoplasia: An International Journal for Oncology Research |
journalStr |
Neoplasia: An International Journal for Oncology Research |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1167 |
author_browse |
Isidora Tošić David A. Frank |
container_volume |
23 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Isidora Tošić |
doi_str_mv |
10.1016/j.neo.2021.10.003 |
author2-role |
verfasserin |
title_sort |
stat3 as a mediator of oncogenic cellular metabolism: pathogenic and therapeutic implications |
callnumber |
RC254-282 |
title_auth |
STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
abstract |
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. |
abstractGer |
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. |
abstract_unstemmed |
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
12 |
title_short |
STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications |
url |
https://doi.org/10.1016/j.neo.2021.10.003 https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9 http://www.sciencedirect.com/science/article/pii/S1476558621000889 https://doaj.org/toc/1476-5586 |
remote_bool |
true |
author2 |
David A. Frank |
author2Str |
David A. Frank |
ppnlink |
320468690 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neo.2021.10.003 |
callnumber-a |
RC254-282 |
up_date |
2024-07-04T00:18:10.466Z |
_version_ |
1803605550529773568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059634936</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neo.2021.10.003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059634936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJbcd24241ef74472dafa6987a998b7cf9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Isidora Tošić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">STAT3 transcription factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein processing, Post-translational</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adenosine triphosphate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lipid metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neoplasms</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David A. Frank</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Neoplasia: An International Journal for Oncology Research</subfield><subfield code="d">Elsevier, 2008</subfield><subfield code="g">23(2021), 12, Seite 1167-1178</subfield><subfield code="w">(DE-627)320468690</subfield><subfield code="w">(DE-600)2008231-9</subfield><subfield code="x">14765586</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1167-1178</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.neo.2021.10.003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/bcd24241ef74472dafa6987a998b7cf9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1476558621000889</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1476-5586</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2021</subfield><subfield code="e">12</subfield><subfield code="h">1167-1178</subfield></datafield></record></collection>
|
score |
7.402525 |