Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term
<p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the probl...
Ausführliche Beschreibung
Autor*in: |
Abid Imed [verfasserIn] Ouni Taieb [verfasserIn] Trabelsi Nihed [verfasserIn] Baraket Sami [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Boundary Value Problems - SpringerOpen, 2006, (2011), 1, p 10 |
---|---|
Übergeordnetes Werk: |
year:2011 ; number:1, p 10 |
Links: |
---|
Katalog-ID: |
DOAJ05968884X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ05968884X | ||
003 | DE-627 | ||
005 | 20230308234908.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2011 xx |||||o 00| ||eng c | ||
035 | |a (DE-627)DOAJ05968884X | ||
035 | |a (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Abid Imed |e verfasserin |4 aut | |
245 | 1 | 0 | |a Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< | ||
650 | 4 | |a singular limits | |
650 | 4 | |a Green's function | |
650 | 4 | |a nonlinear Cauchy-data matching method | |
653 | 0 | |a Analysis | |
700 | 0 | |a Ouni Taieb |e verfasserin |4 aut | |
700 | 0 | |a Trabelsi Nihed |e verfasserin |4 aut | |
700 | 0 | |a Baraket Sami |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Boundary Value Problems |d SpringerOpen, 2006 |g (2011), 1, p 10 |w (DE-627)48672557X |w (DE-600)2187777-4 |x 16872770 |7 nnns |
773 | 1 | 8 | |g year:2011 |g number:1, p 10 |
856 | 4 | 0 | |u https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 |z kostenfrei |
856 | 4 | 0 | |u http://www.boundaryvalueproblems.com/content/2011/1/10 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-2762 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1687-2770 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2011 |e 1, p 10 |
author_variant |
a i ai o t ot t n tn b s bs |
---|---|
matchkey_str |
article:16872770:2011----::iglriiigouinfrlitcrbeivligxoetaldmntd |
hierarchy_sort_str |
2011 |
callnumber-subject-code |
QA |
publishDate |
2011 |
allfields |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 DE-627 ger DE-627 rakwb eng QA299.6-433 Abid Imed verfasserin aut Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< singular limits Green's function nonlinear Cauchy-data matching method Analysis Ouni Taieb verfasserin aut Trabelsi Nihed verfasserin aut Baraket Sami verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2011), 1, p 10 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2011 number:1, p 10 https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 kostenfrei http://www.boundaryvalueproblems.com/content/2011/1/10 kostenfrei https://doaj.org/toc/1687-2762 Journal toc kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2011 1, p 10 |
spelling |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 DE-627 ger DE-627 rakwb eng QA299.6-433 Abid Imed verfasserin aut Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< singular limits Green's function nonlinear Cauchy-data matching method Analysis Ouni Taieb verfasserin aut Trabelsi Nihed verfasserin aut Baraket Sami verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2011), 1, p 10 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2011 number:1, p 10 https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 kostenfrei http://www.boundaryvalueproblems.com/content/2011/1/10 kostenfrei https://doaj.org/toc/1687-2762 Journal toc kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2011 1, p 10 |
allfields_unstemmed |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 DE-627 ger DE-627 rakwb eng QA299.6-433 Abid Imed verfasserin aut Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< singular limits Green's function nonlinear Cauchy-data matching method Analysis Ouni Taieb verfasserin aut Trabelsi Nihed verfasserin aut Baraket Sami verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2011), 1, p 10 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2011 number:1, p 10 https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 kostenfrei http://www.boundaryvalueproblems.com/content/2011/1/10 kostenfrei https://doaj.org/toc/1687-2762 Journal toc kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2011 1, p 10 |
allfieldsGer |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 DE-627 ger DE-627 rakwb eng QA299.6-433 Abid Imed verfasserin aut Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< singular limits Green's function nonlinear Cauchy-data matching method Analysis Ouni Taieb verfasserin aut Trabelsi Nihed verfasserin aut Baraket Sami verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2011), 1, p 10 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2011 number:1, p 10 https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 kostenfrei http://www.boundaryvalueproblems.com/content/2011/1/10 kostenfrei https://doaj.org/toc/1687-2762 Journal toc kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2011 1, p 10 |
allfieldsSound |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 DE-627 ger DE-627 rakwb eng QA299.6-433 Abid Imed verfasserin aut Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< singular limits Green's function nonlinear Cauchy-data matching method Analysis Ouni Taieb verfasserin aut Trabelsi Nihed verfasserin aut Baraket Sami verfasserin aut In Boundary Value Problems SpringerOpen, 2006 (2011), 1, p 10 (DE-627)48672557X (DE-600)2187777-4 16872770 nnns year:2011 number:1, p 10 https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 kostenfrei http://www.boundaryvalueproblems.com/content/2011/1/10 kostenfrei https://doaj.org/toc/1687-2762 Journal toc kostenfrei https://doaj.org/toc/1687-2770 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2011 1, p 10 |
language |
English |
source |
In Boundary Value Problems (2011), 1, p 10 year:2011 number:1, p 10 |
sourceStr |
In Boundary Value Problems (2011), 1, p 10 year:2011 number:1, p 10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
singular limits Green's function nonlinear Cauchy-data matching method Analysis |
isfreeaccess_bool |
true |
container_title |
Boundary Value Problems |
authorswithroles_txt_mv |
Abid Imed @@aut@@ Ouni Taieb @@aut@@ Trabelsi Nihed @@aut@@ Baraket Sami @@aut@@ |
publishDateDaySort_date |
2011-01-01T00:00:00Z |
hierarchy_top_id |
48672557X |
id |
DOAJ05968884X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05968884X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05968884X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abid Imed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<&gt; 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular limits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green's function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Cauchy-data matching method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ouni Taieb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trabelsi Nihed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baraket Sami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2011), 1, p 10</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2011</subfield><subfield code="g">number:1, p 10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.boundaryvalueproblems.com/content/2011/1/10</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2762</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2011</subfield><subfield code="e">1, p 10</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Abid Imed |
spellingShingle |
Abid Imed misc QA299.6-433 misc singular limits misc Green's function misc nonlinear Cauchy-data matching method misc Analysis Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
authorStr |
Abid Imed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)48672557X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA299 |
illustrated |
Not Illustrated |
issn |
16872770 |
topic_title |
QA299.6-433 Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term singular limits Green's function nonlinear Cauchy-data matching method |
topic |
misc QA299.6-433 misc singular limits misc Green's function misc nonlinear Cauchy-data matching method misc Analysis |
topic_unstemmed |
misc QA299.6-433 misc singular limits misc Green's function misc nonlinear Cauchy-data matching method misc Analysis |
topic_browse |
misc QA299.6-433 misc singular limits misc Green's function misc nonlinear Cauchy-data matching method misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Boundary Value Problems |
hierarchy_parent_id |
48672557X |
hierarchy_top_title |
Boundary Value Problems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)48672557X (DE-600)2187777-4 |
title |
Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
ctrlnum |
(DE-627)DOAJ05968884X (DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646 |
title_full |
Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
author_sort |
Abid Imed |
journal |
Boundary Value Problems |
journalStr |
Boundary Value Problems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Abid Imed Ouni Taieb Trabelsi Nihed Baraket Sami |
class |
QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Abid Imed |
author2-role |
verfasserin |
title_sort |
singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
callnumber |
QA299.6-433 |
title_auth |
Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
abstract |
<p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< |
abstractGer |
<p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< |
abstract_unstemmed |
<p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<> 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p< |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 10 |
title_short |
Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term |
url |
https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646 http://www.boundaryvalueproblems.com/content/2011/1/10 https://doaj.org/toc/1687-2762 https://doaj.org/toc/1687-2770 |
remote_bool |
true |
author2 |
Ouni Taieb Trabelsi Nihed Baraket Sami |
author2Str |
Ouni Taieb Trabelsi Nihed Baraket Sami |
ppnlink |
48672557X |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
callnumber-a |
QA299.6-433 |
up_date |
2024-07-04T00:30:55.673Z |
_version_ |
1803606352907468800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ05968884X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230308234908.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ05968884X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb2aa50d3ca1d4ff1845951465f012646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Abid Imed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p<Abstract</p< <p<Given Ω bounded open regular set of ℝ<sup<2 </sup<and <it<x</it<<sub<1</sub<, <it<x</it<<sub<2</sub<, ..., <it<x<sub<m </sub<</it<∈ Ω, we give a sufficient condition for the problem</p< <p<<display-formula<<graphic file="1687-2770-2011-10-i1.gif"/<</display-formula<</p< <p<to have a positive weak solution in Ω with <it<u </it<= 0 on ∂Ω, which is singular at each <it<x<sub<i </sub<</it<as the parameters <it<ρ</it<, <it<λ </it<&gt; 0 tend to 0 and where <it<f</it<(<it<u</it<) is dominated exponential nonlinearities functions.</p< <p<2000 <b<Mathematics Subject Classification</b<: 35J60; 53C21; 58J05.</p<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singular limits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green's function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Cauchy-data matching method</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ouni Taieb</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Trabelsi Nihed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baraket Sami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Boundary Value Problems</subfield><subfield code="d">SpringerOpen, 2006</subfield><subfield code="g">(2011), 1, p 10</subfield><subfield code="w">(DE-627)48672557X</subfield><subfield code="w">(DE-600)2187777-4</subfield><subfield code="x">16872770</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2011</subfield><subfield code="g">number:1, p 10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b2aa50d3ca1d4ff1845951465f012646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.boundaryvalueproblems.com/content/2011/1/10</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2762</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1687-2770</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2011</subfield><subfield code="e">1, p 10</subfield></datafield></record></collection>
|
score |
7.401636 |