Heat transfer characteristics of piston-driven synthetic jet
This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The...
Ausführliche Beschreibung
Autor*in: |
Arun Jacob [verfasserIn] K.A. Shafi [verfasserIn] K.E.Reby Roy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Thermofluids - Elsevier, 2020, 11(2021), Seite 100104- |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; pages:100104- |
Links: |
---|
DOI / URN: |
10.1016/j.ijft.2021.100104 |
---|
Katalog-ID: |
DOAJ059714301 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ059714301 | ||
003 | DE-627 | ||
005 | 20230503073842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijft.2021.100104 |2 doi | |
035 | |a (DE-627)DOAJ059714301 | ||
035 | |a (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC251-338.5 | |
100 | 0 | |a Arun Jacob |e verfasserin |4 aut | |
245 | 1 | 0 | |a Heat transfer characteristics of piston-driven synthetic jet |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. | ||
650 | 4 | |a Frequency | |
650 | 4 | |a Jet impingement | |
650 | 4 | |a Nusselt number | |
650 | 4 | |a Stroke length | |
650 | 4 | |a Synthetic jet | |
653 | 0 | |a Heat | |
700 | 0 | |a K.A. Shafi |e verfasserin |4 aut | |
700 | 0 | |a K.E.Reby Roy |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Thermofluids |d Elsevier, 2020 |g 11(2021), Seite 100104- |w (DE-627)1760627569 |x 26662027 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g pages:100104- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijft.2021.100104 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2666202721000422 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2666-2027 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |h 100104- |
author_variant |
a j aj k s ks k r kr |
---|---|
matchkey_str |
article:26662027:2021----::etrnfrhrceitcopsodi |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QC |
publishDate |
2021 |
allfields |
10.1016/j.ijft.2021.100104 doi (DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c DE-627 ger DE-627 rakwb eng QC251-338.5 Arun Jacob verfasserin aut Heat transfer characteristics of piston-driven synthetic jet 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat K.A. Shafi verfasserin aut K.E.Reby Roy verfasserin aut In International Journal of Thermofluids Elsevier, 2020 11(2021), Seite 100104- (DE-627)1760627569 26662027 nnns volume:11 year:2021 pages:100104- https://doi.org/10.1016/j.ijft.2021.100104 kostenfrei https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c kostenfrei http://www.sciencedirect.com/science/article/pii/S2666202721000422 kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2021 100104- |
spelling |
10.1016/j.ijft.2021.100104 doi (DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c DE-627 ger DE-627 rakwb eng QC251-338.5 Arun Jacob verfasserin aut Heat transfer characteristics of piston-driven synthetic jet 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat K.A. Shafi verfasserin aut K.E.Reby Roy verfasserin aut In International Journal of Thermofluids Elsevier, 2020 11(2021), Seite 100104- (DE-627)1760627569 26662027 nnns volume:11 year:2021 pages:100104- https://doi.org/10.1016/j.ijft.2021.100104 kostenfrei https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c kostenfrei http://www.sciencedirect.com/science/article/pii/S2666202721000422 kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2021 100104- |
allfields_unstemmed |
10.1016/j.ijft.2021.100104 doi (DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c DE-627 ger DE-627 rakwb eng QC251-338.5 Arun Jacob verfasserin aut Heat transfer characteristics of piston-driven synthetic jet 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat K.A. Shafi verfasserin aut K.E.Reby Roy verfasserin aut In International Journal of Thermofluids Elsevier, 2020 11(2021), Seite 100104- (DE-627)1760627569 26662027 nnns volume:11 year:2021 pages:100104- https://doi.org/10.1016/j.ijft.2021.100104 kostenfrei https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c kostenfrei http://www.sciencedirect.com/science/article/pii/S2666202721000422 kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2021 100104- |
allfieldsGer |
10.1016/j.ijft.2021.100104 doi (DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c DE-627 ger DE-627 rakwb eng QC251-338.5 Arun Jacob verfasserin aut Heat transfer characteristics of piston-driven synthetic jet 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat K.A. Shafi verfasserin aut K.E.Reby Roy verfasserin aut In International Journal of Thermofluids Elsevier, 2020 11(2021), Seite 100104- (DE-627)1760627569 26662027 nnns volume:11 year:2021 pages:100104- https://doi.org/10.1016/j.ijft.2021.100104 kostenfrei https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c kostenfrei http://www.sciencedirect.com/science/article/pii/S2666202721000422 kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2021 100104- |
allfieldsSound |
10.1016/j.ijft.2021.100104 doi (DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c DE-627 ger DE-627 rakwb eng QC251-338.5 Arun Jacob verfasserin aut Heat transfer characteristics of piston-driven synthetic jet 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat K.A. Shafi verfasserin aut K.E.Reby Roy verfasserin aut In International Journal of Thermofluids Elsevier, 2020 11(2021), Seite 100104- (DE-627)1760627569 26662027 nnns volume:11 year:2021 pages:100104- https://doi.org/10.1016/j.ijft.2021.100104 kostenfrei https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c kostenfrei http://www.sciencedirect.com/science/article/pii/S2666202721000422 kostenfrei https://doaj.org/toc/2666-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 11 2021 100104- |
language |
English |
source |
In International Journal of Thermofluids 11(2021), Seite 100104- volume:11 year:2021 pages:100104- |
sourceStr |
In International Journal of Thermofluids 11(2021), Seite 100104- volume:11 year:2021 pages:100104- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Frequency Jet impingement Nusselt number Stroke length Synthetic jet Heat |
isfreeaccess_bool |
true |
container_title |
International Journal of Thermofluids |
authorswithroles_txt_mv |
Arun Jacob @@aut@@ K.A. Shafi @@aut@@ K.E.Reby Roy @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
1760627569 |
id |
DOAJ059714301 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059714301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijft.2021.100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059714301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe1fba51b71e24516a63a04a04041e12c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC251-338.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arun Jacob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer characteristics of piston-driven synthetic jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet impingement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stroke length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic jet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Heat</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.A. Shafi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.E.Reby Roy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Thermofluids</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">11(2021), Seite 100104-</subfield><subfield code="w">(DE-627)1760627569</subfield><subfield code="x">26662027</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:100104-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijft.2021.100104</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2666202721000422</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="h">100104-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Arun Jacob |
spellingShingle |
Arun Jacob misc QC251-338.5 misc Frequency misc Jet impingement misc Nusselt number misc Stroke length misc Synthetic jet misc Heat Heat transfer characteristics of piston-driven synthetic jet |
authorStr |
Arun Jacob |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1760627569 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC251-338 |
illustrated |
Not Illustrated |
issn |
26662027 |
topic_title |
QC251-338.5 Heat transfer characteristics of piston-driven synthetic jet Frequency Jet impingement Nusselt number Stroke length Synthetic jet |
topic |
misc QC251-338.5 misc Frequency misc Jet impingement misc Nusselt number misc Stroke length misc Synthetic jet misc Heat |
topic_unstemmed |
misc QC251-338.5 misc Frequency misc Jet impingement misc Nusselt number misc Stroke length misc Synthetic jet misc Heat |
topic_browse |
misc QC251-338.5 misc Frequency misc Jet impingement misc Nusselt number misc Stroke length misc Synthetic jet misc Heat |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Thermofluids |
hierarchy_parent_id |
1760627569 |
hierarchy_top_title |
International Journal of Thermofluids |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1760627569 |
title |
Heat transfer characteristics of piston-driven synthetic jet |
ctrlnum |
(DE-627)DOAJ059714301 (DE-599)DOAJe1fba51b71e24516a63a04a04041e12c |
title_full |
Heat transfer characteristics of piston-driven synthetic jet |
author_sort |
Arun Jacob |
journal |
International Journal of Thermofluids |
journalStr |
International Journal of Thermofluids |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
100104 |
author_browse |
Arun Jacob K.A. Shafi K.E.Reby Roy |
container_volume |
11 |
class |
QC251-338.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Arun Jacob |
doi_str_mv |
10.1016/j.ijft.2021.100104 |
author2-role |
verfasserin |
title_sort |
heat transfer characteristics of piston-driven synthetic jet |
callnumber |
QC251-338.5 |
title_auth |
Heat transfer characteristics of piston-driven synthetic jet |
abstract |
This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. |
abstractGer |
This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. |
abstract_unstemmed |
This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Heat transfer characteristics of piston-driven synthetic jet |
url |
https://doi.org/10.1016/j.ijft.2021.100104 https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c http://www.sciencedirect.com/science/article/pii/S2666202721000422 https://doaj.org/toc/2666-2027 |
remote_bool |
true |
author2 |
K.A. Shafi K.E.Reby Roy |
author2Str |
K.A. Shafi K.E.Reby Roy |
ppnlink |
1760627569 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijft.2021.100104 |
callnumber-a |
QC251-338.5 |
up_date |
2024-07-04T00:36:59.875Z |
_version_ |
1803606734800945152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ059714301</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503073842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijft.2021.100104</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ059714301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe1fba51b71e24516a63a04a04041e12c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC251-338.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arun Jacob</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heat transfer characteristics of piston-driven synthetic jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper deals with numerical and experimental investigations on the heat transfer characteristics of a synthetic jet driven by a piston actuator. An experimental setup was designed and fabricated. Numerical studies were conducted using the finite volume-based commercial software ANSYS Fluent. The target surface is a copper plate with a heater placed underneath. Air is considered as a cooling medium. Effects of frequency of jet, the dimensionless distance between the orifice and target plate(Z/D), Reynolds number, orifice diameter and the number of orifices on the heat transfer characteristics are presented. Numerical results are in fair agreement with experimental results. The results indicate that the Z/D and jet frequency have a substantial impact on the heat transfer rate. In the frequency range considered the optimum value of Z/D is 8. It is found that with the increase of frequency, the average Nusselt number increases. For circular orifice and at high Z/D, the orifice diameter should be smaller for better heat transfer. When compared to single jet multiple jets have a higher heat transfer rate. Maximum and minimum values of normalized pressures (Pnr) are achieved for high actuation frequency and smaller areas of the orifice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet impingement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stroke length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic jet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Heat</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.A. Shafi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">K.E.Reby Roy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Thermofluids</subfield><subfield code="d">Elsevier, 2020</subfield><subfield code="g">11(2021), Seite 100104-</subfield><subfield code="w">(DE-627)1760627569</subfield><subfield code="x">26662027</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:100104-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijft.2021.100104</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e1fba51b71e24516a63a04a04041e12c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2666202721000422</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2666-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="h">100104-</subfield></datafield></record></collection>
|
score |
7.402545 |