Numerical Study on Flow Field of Low Temperature Nozzle Device
Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated...
Ausführliche Beschreibung
Autor*in: |
GU Zhiyong;FAN Xu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Chinesisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Isotopes - Editorial Board of Journal of Isotopes, 2015, 35(2022), 1 |
---|---|
Übergeordnetes Werk: |
volume:35 ; year:2022 ; number:1 |
Links: |
---|
DOI / URN: |
10.7538/tws.2022.35.01.0045 |
---|
Katalog-ID: |
DOAJ060005785 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060005785 | ||
003 | DE-627 | ||
005 | 20230502235613.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2022 xx |||||o 00| ||chi c | ||
024 | 7 | |a 10.7538/tws.2022.35.01.0045 |2 doi | |
035 | |a (DE-627)DOAJ060005785 | ||
035 | |a (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a chi | ||
050 | 0 | |a QC770-798 | |
100 | 0 | |a GU Zhiyong;FAN Xu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical Study on Flow Field of Low Temperature Nozzle Device |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. | ||
650 | 4 | |a low temperature nozzle | |
650 | 4 | |a flow field | |
650 | 4 | |a numerical simulation | |
650 | 4 | |a isotope separation | |
653 | 0 | |a Nuclear and particle physics. Atomic energy. Radioactivity | |
773 | 0 | 8 | |i In |t Journal of Isotopes |d Editorial Board of Journal of Isotopes, 2015 |g 35(2022), 1 |w (DE-627)573751730 |w (DE-600)2441958-8 |x 10007512 |7 nnns |
773 | 1 | 8 | |g volume:35 |g year:2022 |g number:1 |
856 | 4 | 0 | |u https://doi.org/10.7538/tws.2022.35.01.0045 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5049d62c71564733bc4edbff37652ffa |z kostenfrei |
856 | 4 | 0 | |u http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1000-7512 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 35 |j 2022 |e 1 |
author_variant |
g z x gzx |
---|---|
matchkey_str |
article:10007512:2022----::ueiasuynlwilolweprt |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.7538/tws.2022.35.01.0045 doi (DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa DE-627 ger DE-627 rakwb chi QC770-798 GU Zhiyong;FAN Xu verfasserin aut Numerical Study on Flow Field of Low Temperature Nozzle Device 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity In Journal of Isotopes Editorial Board of Journal of Isotopes, 2015 35(2022), 1 (DE-627)573751730 (DE-600)2441958-8 10007512 nnns volume:35 year:2022 number:1 https://doi.org/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/article/5049d62c71564733bc4edbff37652ffa kostenfrei http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/toc/1000-7512 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2022 1 |
spelling |
10.7538/tws.2022.35.01.0045 doi (DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa DE-627 ger DE-627 rakwb chi QC770-798 GU Zhiyong;FAN Xu verfasserin aut Numerical Study on Flow Field of Low Temperature Nozzle Device 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity In Journal of Isotopes Editorial Board of Journal of Isotopes, 2015 35(2022), 1 (DE-627)573751730 (DE-600)2441958-8 10007512 nnns volume:35 year:2022 number:1 https://doi.org/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/article/5049d62c71564733bc4edbff37652ffa kostenfrei http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/toc/1000-7512 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2022 1 |
allfields_unstemmed |
10.7538/tws.2022.35.01.0045 doi (DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa DE-627 ger DE-627 rakwb chi QC770-798 GU Zhiyong;FAN Xu verfasserin aut Numerical Study on Flow Field of Low Temperature Nozzle Device 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity In Journal of Isotopes Editorial Board of Journal of Isotopes, 2015 35(2022), 1 (DE-627)573751730 (DE-600)2441958-8 10007512 nnns volume:35 year:2022 number:1 https://doi.org/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/article/5049d62c71564733bc4edbff37652ffa kostenfrei http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/toc/1000-7512 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2022 1 |
allfieldsGer |
10.7538/tws.2022.35.01.0045 doi (DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa DE-627 ger DE-627 rakwb chi QC770-798 GU Zhiyong;FAN Xu verfasserin aut Numerical Study on Flow Field of Low Temperature Nozzle Device 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity In Journal of Isotopes Editorial Board of Journal of Isotopes, 2015 35(2022), 1 (DE-627)573751730 (DE-600)2441958-8 10007512 nnns volume:35 year:2022 number:1 https://doi.org/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/article/5049d62c71564733bc4edbff37652ffa kostenfrei http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/toc/1000-7512 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2022 1 |
allfieldsSound |
10.7538/tws.2022.35.01.0045 doi (DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa DE-627 ger DE-627 rakwb chi QC770-798 GU Zhiyong;FAN Xu verfasserin aut Numerical Study on Flow Field of Low Temperature Nozzle Device 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity In Journal of Isotopes Editorial Board of Journal of Isotopes, 2015 35(2022), 1 (DE-627)573751730 (DE-600)2441958-8 10007512 nnns volume:35 year:2022 number:1 https://doi.org/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/article/5049d62c71564733bc4edbff37652ffa kostenfrei http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 kostenfrei https://doaj.org/toc/1000-7512 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 35 2022 1 |
language |
Chinese |
source |
In Journal of Isotopes 35(2022), 1 volume:35 year:2022 number:1 |
sourceStr |
In Journal of Isotopes 35(2022), 1 volume:35 year:2022 number:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
low temperature nozzle flow field numerical simulation isotope separation Nuclear and particle physics. Atomic energy. Radioactivity |
isfreeaccess_bool |
true |
container_title |
Journal of Isotopes |
authorswithroles_txt_mv |
GU Zhiyong;FAN Xu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
573751730 |
id |
DOAJ060005785 |
language_de |
chinesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060005785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502235613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7538/tws.2022.35.01.0045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060005785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5049d62c71564733bc4edbff37652ffa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">GU Zhiyong;FAN Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Study on Flow Field of Low Temperature Nozzle Device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low temperature nozzle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isotope separation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Isotopes</subfield><subfield code="d">Editorial Board of Journal of Isotopes, 2015</subfield><subfield code="g">35(2022), 1</subfield><subfield code="w">(DE-627)573751730</subfield><subfield code="w">(DE-600)2441958-8</subfield><subfield code="x">10007512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7538/tws.2022.35.01.0045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5049d62c71564733bc4edbff37652ffa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1000-7512</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
GU Zhiyong;FAN Xu |
spellingShingle |
GU Zhiyong;FAN Xu misc QC770-798 misc low temperature nozzle misc flow field misc numerical simulation misc isotope separation misc Nuclear and particle physics. Atomic energy. Radioactivity Numerical Study on Flow Field of Low Temperature Nozzle Device |
authorStr |
GU Zhiyong;FAN Xu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)573751730 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC770-798 |
illustrated |
Not Illustrated |
issn |
10007512 |
topic_title |
QC770-798 Numerical Study on Flow Field of Low Temperature Nozzle Device low temperature nozzle flow field numerical simulation isotope separation |
topic |
misc QC770-798 misc low temperature nozzle misc flow field misc numerical simulation misc isotope separation misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_unstemmed |
misc QC770-798 misc low temperature nozzle misc flow field misc numerical simulation misc isotope separation misc Nuclear and particle physics. Atomic energy. Radioactivity |
topic_browse |
misc QC770-798 misc low temperature nozzle misc flow field misc numerical simulation misc isotope separation misc Nuclear and particle physics. Atomic energy. Radioactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Isotopes |
hierarchy_parent_id |
573751730 |
hierarchy_top_title |
Journal of Isotopes |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)573751730 (DE-600)2441958-8 |
title |
Numerical Study on Flow Field of Low Temperature Nozzle Device |
ctrlnum |
(DE-627)DOAJ060005785 (DE-599)DOAJ5049d62c71564733bc4edbff37652ffa |
title_full |
Numerical Study on Flow Field of Low Temperature Nozzle Device |
author_sort |
GU Zhiyong;FAN Xu |
journal |
Journal of Isotopes |
journalStr |
Journal of Isotopes |
callnumber-first-code |
Q |
lang_code |
chi |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
GU Zhiyong;FAN Xu |
container_volume |
35 |
class |
QC770-798 |
format_se |
Elektronische Aufsätze |
author-letter |
GU Zhiyong;FAN Xu |
doi_str_mv |
10.7538/tws.2022.35.01.0045 |
title_sort |
numerical study on flow field of low temperature nozzle device |
callnumber |
QC770-798 |
title_auth |
Numerical Study on Flow Field of Low Temperature Nozzle Device |
abstract |
Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. |
abstractGer |
Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. |
abstract_unstemmed |
Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Numerical Study on Flow Field of Low Temperature Nozzle Device |
url |
https://doi.org/10.7538/tws.2022.35.01.0045 https://doaj.org/article/5049d62c71564733bc4edbff37652ffa http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045 https://doaj.org/toc/1000-7512 |
remote_bool |
true |
ppnlink |
573751730 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.7538/tws.2022.35.01.0045 |
callnumber-a |
QC770-798 |
up_date |
2024-07-04T01:42:28.002Z |
_version_ |
1803610853741690880 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060005785</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502235613.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2022 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.7538/tws.2022.35.01.0045</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060005785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5049d62c71564733bc4edbff37652ffa</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC770-798</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">GU Zhiyong;FAN Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Study on Flow Field of Low Temperature Nozzle Device</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Condensation Repression by Isotope Selective Laser Activation (CRISLA) method is the most potential LIS method for industrialized application. During the separation procedure of S isotope by CRISLA method, a kind of low temperature nozzle device is introduced to obtain low temperature supersaturated SF6 gas. On one hand, the low temperature can reduce the spectral overlap of S isotope; on the other hand, the laser represses the condensation of target SF6 molecular and the carrier gas Xe molecular, which can gain the dimer of nontarget SF6 and Xe, this phenomenon is beneficial for isotope separation. The calculation and optimization of actual performance of this kind of method is determined by not only the parameters of laser, but also the flow condition inside the low temperature nozzle device, to study the effect of structure of low temperature nozzle device on separation performance, which is the instruction of optimization of separation performance, it is necessary to study the flow field inside the low temperature nozzle device. CFD method is used to simulate the flow field inside the low temperature nozzle device. The distribution of flow parameters especially the distribution of temperature both in and out the nozzle is obtained. Through the results of the simulation of flow field, the designing scheme of nozzle is verified and a preliminary interpretation to the fundamental principles of isotope separation by low temperature nozzle device is proposed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low temperature nozzle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">isotope separation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear and particle physics. Atomic energy. Radioactivity</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Isotopes</subfield><subfield code="d">Editorial Board of Journal of Isotopes, 2015</subfield><subfield code="g">35(2022), 1</subfield><subfield code="w">(DE-627)573751730</subfield><subfield code="w">(DE-600)2441958-8</subfield><subfield code="x">10007512</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:35</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.7538/tws.2022.35.01.0045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5049d62c71564733bc4edbff37652ffa</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.tws.org.cn/CN/10.7538/tws.2022.35.01.0045</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1000-7512</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">35</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield></datafield></record></collection>
|
score |
7.4032135 |