DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals
Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecula...
Ausführliche Beschreibung
Autor*in: |
Je-Keun Rhee [verfasserIn] Jin-Hee Lee [verfasserIn] Hae Kyung Yang [verfasserIn] Tae-Min Kim [verfasserIn] Kun-Ho Yoon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
genome-wide DNA methylation profiling |
---|
Übergeordnetes Werk: |
In: Genomics & Informatics - Korea Genome Organization, 2017, 15(2017), 1, Seite 28-37 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2017 ; number:1 ; pages:28-37 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.5808/GI.2017.15.1.28 |
---|
Katalog-ID: |
DOAJ060043253 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060043253 | ||
003 | DE-627 | ||
005 | 20230309000630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5808/GI.2017.15.1.28 |2 doi | |
035 | |a (DE-627)DOAJ060043253 | ||
035 | |a (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH426-470 | |
100 | 0 | |a Je-Keun Rhee |e verfasserin |4 aut | |
245 | 1 | 0 | |a DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. | ||
650 | 4 | |a DNA methylation | |
650 | 4 | |a genome-wide DNA methylation profiling | |
650 | 4 | |a genome-wide gene expression profiling | |
650 | 4 | |a obese children | |
653 | 0 | |a Genetics | |
700 | 0 | |a Jin-Hee Lee |e verfasserin |4 aut | |
700 | 0 | |a Hae Kyung Yang |e verfasserin |4 aut | |
700 | 0 | |a Tae-Min Kim |e verfasserin |4 aut | |
700 | 0 | |a Kun-Ho Yoon |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Genomics & Informatics |d Korea Genome Organization, 2017 |g 15(2017), 1, Seite 28-37 |w (DE-627)812496515 |w (DE-600)2802682-2 |x 22340742 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2017 |g number:1 |g pages:28-37 |
856 | 4 | 0 | |u https://doi.org/10.5808/GI.2017.15.1.28 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b |z kostenfrei |
856 | 4 | 0 | |u http://genominfo.org/upload/pdf/gni-15-28.pdf |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1598-866X |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2234-0742 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2017 |e 1 |h 28-37 |
author_variant |
j k r jkr j h l jhl h k y hky t m k tmk k h y khy |
---|---|
matchkey_str |
article:22340742:2017----::nmtyainrflsfloclsrdsicbtenalostbs |
hierarchy_sort_str |
2017 |
callnumber-subject-code |
QH |
publishDate |
2017 |
allfields |
10.5808/GI.2017.15.1.28 doi (DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b DE-627 ger DE-627 rakwb eng QH426-470 Je-Keun Rhee verfasserin aut DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics Jin-Hee Lee verfasserin aut Hae Kyung Yang verfasserin aut Tae-Min Kim verfasserin aut Kun-Ho Yoon verfasserin aut In Genomics & Informatics Korea Genome Organization, 2017 15(2017), 1, Seite 28-37 (DE-627)812496515 (DE-600)2802682-2 22340742 nnns volume:15 year:2017 number:1 pages:28-37 https://doi.org/10.5808/GI.2017.15.1.28 kostenfrei https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b kostenfrei http://genominfo.org/upload/pdf/gni-15-28.pdf kostenfrei https://doaj.org/toc/1598-866X Journal toc kostenfrei https://doaj.org/toc/2234-0742 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2017 1 28-37 |
spelling |
10.5808/GI.2017.15.1.28 doi (DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b DE-627 ger DE-627 rakwb eng QH426-470 Je-Keun Rhee verfasserin aut DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics Jin-Hee Lee verfasserin aut Hae Kyung Yang verfasserin aut Tae-Min Kim verfasserin aut Kun-Ho Yoon verfasserin aut In Genomics & Informatics Korea Genome Organization, 2017 15(2017), 1, Seite 28-37 (DE-627)812496515 (DE-600)2802682-2 22340742 nnns volume:15 year:2017 number:1 pages:28-37 https://doi.org/10.5808/GI.2017.15.1.28 kostenfrei https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b kostenfrei http://genominfo.org/upload/pdf/gni-15-28.pdf kostenfrei https://doaj.org/toc/1598-866X Journal toc kostenfrei https://doaj.org/toc/2234-0742 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2017 1 28-37 |
allfields_unstemmed |
10.5808/GI.2017.15.1.28 doi (DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b DE-627 ger DE-627 rakwb eng QH426-470 Je-Keun Rhee verfasserin aut DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics Jin-Hee Lee verfasserin aut Hae Kyung Yang verfasserin aut Tae-Min Kim verfasserin aut Kun-Ho Yoon verfasserin aut In Genomics & Informatics Korea Genome Organization, 2017 15(2017), 1, Seite 28-37 (DE-627)812496515 (DE-600)2802682-2 22340742 nnns volume:15 year:2017 number:1 pages:28-37 https://doi.org/10.5808/GI.2017.15.1.28 kostenfrei https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b kostenfrei http://genominfo.org/upload/pdf/gni-15-28.pdf kostenfrei https://doaj.org/toc/1598-866X Journal toc kostenfrei https://doaj.org/toc/2234-0742 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2017 1 28-37 |
allfieldsGer |
10.5808/GI.2017.15.1.28 doi (DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b DE-627 ger DE-627 rakwb eng QH426-470 Je-Keun Rhee verfasserin aut DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics Jin-Hee Lee verfasserin aut Hae Kyung Yang verfasserin aut Tae-Min Kim verfasserin aut Kun-Ho Yoon verfasserin aut In Genomics & Informatics Korea Genome Organization, 2017 15(2017), 1, Seite 28-37 (DE-627)812496515 (DE-600)2802682-2 22340742 nnns volume:15 year:2017 number:1 pages:28-37 https://doi.org/10.5808/GI.2017.15.1.28 kostenfrei https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b kostenfrei http://genominfo.org/upload/pdf/gni-15-28.pdf kostenfrei https://doaj.org/toc/1598-866X Journal toc kostenfrei https://doaj.org/toc/2234-0742 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2017 1 28-37 |
allfieldsSound |
10.5808/GI.2017.15.1.28 doi (DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b DE-627 ger DE-627 rakwb eng QH426-470 Je-Keun Rhee verfasserin aut DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics Jin-Hee Lee verfasserin aut Hae Kyung Yang verfasserin aut Tae-Min Kim verfasserin aut Kun-Ho Yoon verfasserin aut In Genomics & Informatics Korea Genome Organization, 2017 15(2017), 1, Seite 28-37 (DE-627)812496515 (DE-600)2802682-2 22340742 nnns volume:15 year:2017 number:1 pages:28-37 https://doi.org/10.5808/GI.2017.15.1.28 kostenfrei https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b kostenfrei http://genominfo.org/upload/pdf/gni-15-28.pdf kostenfrei https://doaj.org/toc/1598-866X Journal toc kostenfrei https://doaj.org/toc/2234-0742 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2017 1 28-37 |
language |
English |
source |
In Genomics & Informatics 15(2017), 1, Seite 28-37 volume:15 year:2017 number:1 pages:28-37 |
sourceStr |
In Genomics & Informatics 15(2017), 1, Seite 28-37 volume:15 year:2017 number:1 pages:28-37 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children Genetics |
isfreeaccess_bool |
true |
container_title |
Genomics & Informatics |
authorswithroles_txt_mv |
Je-Keun Rhee @@aut@@ Jin-Hee Lee @@aut@@ Hae Kyung Yang @@aut@@ Tae-Min Kim @@aut@@ Kun-Ho Yoon @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
812496515 |
id |
DOAJ060043253 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060043253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309000630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5808/GI.2017.15.1.28</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060043253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Je-Keun Rhee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome-wide DNA methylation profiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome-wide gene expression profiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obese children</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin-Hee Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hae Kyung Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tae-Min Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun-Ho Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genomics & Informatics</subfield><subfield code="d">Korea Genome Organization, 2017</subfield><subfield code="g">15(2017), 1, Seite 28-37</subfield><subfield code="w">(DE-627)812496515</subfield><subfield code="w">(DE-600)2802682-2</subfield><subfield code="x">22340742</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:28-37</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5808/GI.2017.15.1.28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://genominfo.org/upload/pdf/gni-15-28.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1598-866X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-0742</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">28-37</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Je-Keun Rhee |
spellingShingle |
Je-Keun Rhee misc QH426-470 misc DNA methylation misc genome-wide DNA methylation profiling misc genome-wide gene expression profiling misc obese children misc Genetics DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
authorStr |
Je-Keun Rhee |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)812496515 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH426-470 |
illustrated |
Not Illustrated |
issn |
22340742 |
topic_title |
QH426-470 DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals DNA methylation genome-wide DNA methylation profiling genome-wide gene expression profiling obese children |
topic |
misc QH426-470 misc DNA methylation misc genome-wide DNA methylation profiling misc genome-wide gene expression profiling misc obese children misc Genetics |
topic_unstemmed |
misc QH426-470 misc DNA methylation misc genome-wide DNA methylation profiling misc genome-wide gene expression profiling misc obese children misc Genetics |
topic_browse |
misc QH426-470 misc DNA methylation misc genome-wide DNA methylation profiling misc genome-wide gene expression profiling misc obese children misc Genetics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genomics & Informatics |
hierarchy_parent_id |
812496515 |
hierarchy_top_title |
Genomics & Informatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)812496515 (DE-600)2802682-2 |
title |
DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
ctrlnum |
(DE-627)DOAJ060043253 (DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b |
title_full |
DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
author_sort |
Je-Keun Rhee |
journal |
Genomics & Informatics |
journalStr |
Genomics & Informatics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
28 |
author_browse |
Je-Keun Rhee Jin-Hee Lee Hae Kyung Yang Tae-Min Kim Kun-Ho Yoon |
container_volume |
15 |
class |
QH426-470 |
format_se |
Elektronische Aufsätze |
author-letter |
Je-Keun Rhee |
doi_str_mv |
10.5808/GI.2017.15.1.28 |
author2-role |
verfasserin |
title_sort |
dna methylation profiles of blood cells are distinct between early-onset obese and control individuals |
callnumber |
QH426-470 |
title_auth |
DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
abstract |
Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. |
abstractGer |
Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. |
abstract_unstemmed |
Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals |
url |
https://doi.org/10.5808/GI.2017.15.1.28 https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b http://genominfo.org/upload/pdf/gni-15-28.pdf https://doaj.org/toc/1598-866X https://doaj.org/toc/2234-0742 |
remote_bool |
true |
author2 |
Jin-Hee Lee Hae Kyung Yang Tae-Min Kim Kun-Ho Yoon |
author2Str |
Jin-Hee Lee Hae Kyung Yang Tae-Min Kim Kun-Ho Yoon |
ppnlink |
812496515 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5808/GI.2017.15.1.28 |
callnumber-a |
QH426-470 |
up_date |
2024-07-04T01:50:22.901Z |
_version_ |
1803611351709384704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060043253</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309000630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5808/GI.2017.15.1.28</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060043253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7bcbfca1971447258d0d71b2ffaab05b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH426-470</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Je-Keun Rhee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome-wide DNA methylation profiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">genome-wide gene expression profiling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obese children</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Genetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jin-Hee Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hae Kyung Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tae-Min Kim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kun-Ho Yoon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Genomics & Informatics</subfield><subfield code="d">Korea Genome Organization, 2017</subfield><subfield code="g">15(2017), 1, Seite 28-37</subfield><subfield code="w">(DE-627)812496515</subfield><subfield code="w">(DE-600)2802682-2</subfield><subfield code="x">22340742</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:28-37</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5808/GI.2017.15.1.28</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7bcbfca1971447258d0d71b2ffaab05b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://genominfo.org/upload/pdf/gni-15-28.pdf</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1598-866X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-0742</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">28-37</subfield></datafield></record></collection>
|
score |
7.4008236 |