Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement
Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected a...
Ausführliche Beschreibung
Autor*in: |
Chikage Todo [verfasserIn] Hidetoshi Ikeno [verfasserIn] Keitaro Yamase [verfasserIn] Toko Tanikawa [verfasserIn] Mizue Ohashi [verfasserIn] Masako Dannoura [verfasserIn] Toshifumi Kimura [verfasserIn] Yasuhiro Hirano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Forests - MDPI AG, 2010, 12(2021), 8, p 1117 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2021 ; number:8, p 1117 |
Links: |
---|
DOI / URN: |
10.3390/f12081117 |
---|
Katalog-ID: |
DOAJ060044705 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060044705 | ||
003 | DE-627 | ||
005 | 20240412163711.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/f12081117 |2 doi | |
035 | |a (DE-627)DOAJ060044705 | ||
035 | |a (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK900-989 | |
100 | 0 | |a Chikage Todo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. | ||
650 | 4 | |a anchorage | |
650 | 4 | |a coarse root | |
650 | 4 | |a measurement method | |
650 | 4 | |a <i<Pinus thunbergii</i< | |
650 | 4 | |a root cross-sectional area | |
650 | 4 | |a root system architecture | |
653 | 0 | |a Plant ecology | |
700 | 0 | |a Hidetoshi Ikeno |e verfasserin |4 aut | |
700 | 0 | |a Keitaro Yamase |e verfasserin |4 aut | |
700 | 0 | |a Toko Tanikawa |e verfasserin |4 aut | |
700 | 0 | |a Mizue Ohashi |e verfasserin |4 aut | |
700 | 0 | |a Masako Dannoura |e verfasserin |4 aut | |
700 | 0 | |a Toshifumi Kimura |e verfasserin |4 aut | |
700 | 0 | |a Yasuhiro Hirano |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Forests |d MDPI AG, 2010 |g 12(2021), 8, p 1117 |w (DE-627)614095689 |w (DE-600)2527081-3 |x 19994907 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2021 |g number:8, p 1117 |
856 | 4 | 0 | |u https://doi.org/10.3390/f12081117 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1999-4907/12/8/1117 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1999-4907 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2021 |e 8, p 1117 |
author_variant |
c t ct h i hi k y ky t t tt m o mo m d md t k tk y h yh |
---|---|
matchkey_str |
article:19994907:2021----::eosrcinfoierossesapdihoncodaabandydaesannc |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
QK |
publishDate |
2021 |
allfields |
10.3390/f12081117 doi (DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 DE-627 ger DE-627 rakwb eng QK900-989 Chikage Todo verfasserin aut Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology Hidetoshi Ikeno verfasserin aut Keitaro Yamase verfasserin aut Toko Tanikawa verfasserin aut Mizue Ohashi verfasserin aut Masako Dannoura verfasserin aut Toshifumi Kimura verfasserin aut Yasuhiro Hirano verfasserin aut In Forests MDPI AG, 2010 12(2021), 8, p 1117 (DE-627)614095689 (DE-600)2527081-3 19994907 nnns volume:12 year:2021 number:8, p 1117 https://doi.org/10.3390/f12081117 kostenfrei https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 kostenfrei https://www.mdpi.com/1999-4907/12/8/1117 kostenfrei https://doaj.org/toc/1999-4907 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 8, p 1117 |
spelling |
10.3390/f12081117 doi (DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 DE-627 ger DE-627 rakwb eng QK900-989 Chikage Todo verfasserin aut Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology Hidetoshi Ikeno verfasserin aut Keitaro Yamase verfasserin aut Toko Tanikawa verfasserin aut Mizue Ohashi verfasserin aut Masako Dannoura verfasserin aut Toshifumi Kimura verfasserin aut Yasuhiro Hirano verfasserin aut In Forests MDPI AG, 2010 12(2021), 8, p 1117 (DE-627)614095689 (DE-600)2527081-3 19994907 nnns volume:12 year:2021 number:8, p 1117 https://doi.org/10.3390/f12081117 kostenfrei https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 kostenfrei https://www.mdpi.com/1999-4907/12/8/1117 kostenfrei https://doaj.org/toc/1999-4907 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 8, p 1117 |
allfields_unstemmed |
10.3390/f12081117 doi (DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 DE-627 ger DE-627 rakwb eng QK900-989 Chikage Todo verfasserin aut Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology Hidetoshi Ikeno verfasserin aut Keitaro Yamase verfasserin aut Toko Tanikawa verfasserin aut Mizue Ohashi verfasserin aut Masako Dannoura verfasserin aut Toshifumi Kimura verfasserin aut Yasuhiro Hirano verfasserin aut In Forests MDPI AG, 2010 12(2021), 8, p 1117 (DE-627)614095689 (DE-600)2527081-3 19994907 nnns volume:12 year:2021 number:8, p 1117 https://doi.org/10.3390/f12081117 kostenfrei https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 kostenfrei https://www.mdpi.com/1999-4907/12/8/1117 kostenfrei https://doaj.org/toc/1999-4907 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 8, p 1117 |
allfieldsGer |
10.3390/f12081117 doi (DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 DE-627 ger DE-627 rakwb eng QK900-989 Chikage Todo verfasserin aut Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology Hidetoshi Ikeno verfasserin aut Keitaro Yamase verfasserin aut Toko Tanikawa verfasserin aut Mizue Ohashi verfasserin aut Masako Dannoura verfasserin aut Toshifumi Kimura verfasserin aut Yasuhiro Hirano verfasserin aut In Forests MDPI AG, 2010 12(2021), 8, p 1117 (DE-627)614095689 (DE-600)2527081-3 19994907 nnns volume:12 year:2021 number:8, p 1117 https://doi.org/10.3390/f12081117 kostenfrei https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 kostenfrei https://www.mdpi.com/1999-4907/12/8/1117 kostenfrei https://doaj.org/toc/1999-4907 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 8, p 1117 |
allfieldsSound |
10.3390/f12081117 doi (DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 DE-627 ger DE-627 rakwb eng QK900-989 Chikage Todo verfasserin aut Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology Hidetoshi Ikeno verfasserin aut Keitaro Yamase verfasserin aut Toko Tanikawa verfasserin aut Mizue Ohashi verfasserin aut Masako Dannoura verfasserin aut Toshifumi Kimura verfasserin aut Yasuhiro Hirano verfasserin aut In Forests MDPI AG, 2010 12(2021), 8, p 1117 (DE-627)614095689 (DE-600)2527081-3 19994907 nnns volume:12 year:2021 number:8, p 1117 https://doi.org/10.3390/f12081117 kostenfrei https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 kostenfrei https://www.mdpi.com/1999-4907/12/8/1117 kostenfrei https://doaj.org/toc/1999-4907 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 12 2021 8, p 1117 |
language |
English |
source |
In Forests 12(2021), 8, p 1117 volume:12 year:2021 number:8, p 1117 |
sourceStr |
In Forests 12(2021), 8, p 1117 volume:12 year:2021 number:8, p 1117 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture Plant ecology |
isfreeaccess_bool |
true |
container_title |
Forests |
authorswithroles_txt_mv |
Chikage Todo @@aut@@ Hidetoshi Ikeno @@aut@@ Keitaro Yamase @@aut@@ Toko Tanikawa @@aut@@ Mizue Ohashi @@aut@@ Masako Dannoura @@aut@@ Toshifumi Kimura @@aut@@ Yasuhiro Hirano @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
614095689 |
id |
DOAJ060044705 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060044705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412163711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/f12081117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060044705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chikage Todo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anchorage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coarse root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurement method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pinus thunbergii</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root cross-sectional area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root system architecture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidetoshi Ikeno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keitaro Yamase</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toko Tanikawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mizue Ohashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masako Dannoura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshifumi Kimura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasuhiro Hirano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Forests</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2021), 8, p 1117</subfield><subfield code="w">(DE-627)614095689</subfield><subfield code="w">(DE-600)2527081-3</subfield><subfield code="x">19994907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 1117</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/f12081117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-4907/12/8/1117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4907</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 1117</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chikage Todo |
spellingShingle |
Chikage Todo misc QK900-989 misc anchorage misc coarse root misc measurement method misc <i<Pinus thunbergii</i< misc root cross-sectional area misc root system architecture misc Plant ecology Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
authorStr |
Chikage Todo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)614095689 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK900-989 |
illustrated |
Not Illustrated |
issn |
19994907 |
topic_title |
QK900-989 Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement anchorage coarse root measurement method <i<Pinus thunbergii</i< root cross-sectional area root system architecture |
topic |
misc QK900-989 misc anchorage misc coarse root misc measurement method misc <i<Pinus thunbergii</i< misc root cross-sectional area misc root system architecture misc Plant ecology |
topic_unstemmed |
misc QK900-989 misc anchorage misc coarse root misc measurement method misc <i<Pinus thunbergii</i< misc root cross-sectional area misc root system architecture misc Plant ecology |
topic_browse |
misc QK900-989 misc anchorage misc coarse root misc measurement method misc <i<Pinus thunbergii</i< misc root cross-sectional area misc root system architecture misc Plant ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Forests |
hierarchy_parent_id |
614095689 |
hierarchy_top_title |
Forests |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)614095689 (DE-600)2527081-3 |
title |
Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
ctrlnum |
(DE-627)DOAJ060044705 (DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249 |
title_full |
Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
author_sort |
Chikage Todo |
journal |
Forests |
journalStr |
Forests |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Chikage Todo Hidetoshi Ikeno Keitaro Yamase Toko Tanikawa Mizue Ohashi Masako Dannoura Toshifumi Kimura Yasuhiro Hirano |
container_volume |
12 |
class |
QK900-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Chikage Todo |
doi_str_mv |
10.3390/f12081117 |
author2-role |
verfasserin |
title_sort |
reconstruction of conifer root systems mapped with point cloud data obtained by 3d laser scanning compared with manual measurement |
callnumber |
QK900-989 |
title_auth |
Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
abstract |
Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. |
abstractGer |
Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. |
abstract_unstemmed |
Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8, p 1117 |
title_short |
Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement |
url |
https://doi.org/10.3390/f12081117 https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249 https://www.mdpi.com/1999-4907/12/8/1117 https://doaj.org/toc/1999-4907 |
remote_bool |
true |
author2 |
Hidetoshi Ikeno Keitaro Yamase Toko Tanikawa Mizue Ohashi Masako Dannoura Toshifumi Kimura Yasuhiro Hirano |
author2Str |
Hidetoshi Ikeno Keitaro Yamase Toko Tanikawa Mizue Ohashi Masako Dannoura Toshifumi Kimura Yasuhiro Hirano |
ppnlink |
614095689 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/f12081117 |
callnumber-a |
QK900-989 |
up_date |
2024-07-04T01:50:41.262Z |
_version_ |
1803611370961240064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060044705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412163711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/f12081117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060044705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69dc5b78abf64d0594fdee7a742df249</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK900-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chikage Todo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstruction of Conifer Root Systems Mapped with Point Cloud Data Obtained by 3D Laser Scanning Compared with Manual Measurement</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three-dimensional (3D) root system architecture (RSA) is a predominant factor in anchorage failure in trees. Only a few studies have used 3D laser scanners to evaluate RSA, but they do not check the accuracy of measurements. 3D laser scanners can quickly obtain RSA data, but the data are collected as a point cloud with a large number of points representing surfaces. The point cloud data must be converted into a set of interconnected axes and segments to compute the root system traits. The purposes of this study were: (i) to propose a new method for easily obtaining root point data as 3D coordinates and root diameters from point cloud data acquired by 3D laser scanner measurement; and (ii) to compare the accuracy of the data from main roots with intensive manual measurement. We scanned the excavated root systems of two <i<Pinus thunbergii</i< Parl. trees using a 3D laser scanner and neuTube software, which was developed for reconstructing the neuronal structure, to convert the point cloud data into root point data for reconstructing RSA. The reconstruction and traits of the RSA calculated from point cloud data were similar in accuracy to intensive manual measurements. Roots larger than 7 mm in diameter were accurately measured by the 3D laser scanner measurement. In the proposed method, the root point data were connected as a frustum of cones, so the reconstructed RSAs were simpler than the 3D root surfaces. However, the frustum of cones still showed the main coarse root segments correctly. We concluded that the proposed method could be applied to reconstruct the RSA and calculate traits using point cloud data of the root system, on the condition that it was possible to model both the stump and ovality of root sections.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anchorage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coarse root</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurement method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Pinus thunbergii</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root cross-sectional area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root system architecture</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Plant ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hidetoshi Ikeno</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Keitaro Yamase</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toko Tanikawa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mizue Ohashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Masako Dannoura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshifumi Kimura</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yasuhiro Hirano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Forests</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">12(2021), 8, p 1117</subfield><subfield code="w">(DE-627)614095689</subfield><subfield code="w">(DE-600)2527081-3</subfield><subfield code="x">19994907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8, p 1117</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/f12081117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69dc5b78abf64d0594fdee7a742df249</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1999-4907/12/8/1117</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1999-4907</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2021</subfield><subfield code="e">8, p 1117</subfield></datafield></record></collection>
|
score |
7.40049 |