Pulsed EPR Methods to Study Biomolecular Interactions
Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems...
Ausführliche Beschreibung
Autor*in: |
Irina Ritsch [verfasserIn] Daniel Klose [verfasserIn] Henrik Hintz [verfasserIn] Adelheid Godt [verfasserIn] Gunnar Jeschke [verfasserIn] Maxim Yulikov [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Deutsch ; Englisch ; Französisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: CHIMIA - Swiss Chemical Society, 2020, 73(2019), 4 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2019 ; number:4 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.2533/chimia.2019.268 |
---|
Katalog-ID: |
DOAJ060057297 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060057297 | ||
003 | DE-627 | ||
005 | 20230502092042.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||ger c | ||
024 | 7 | |a 10.2533/chimia.2019.268 |2 doi | |
035 | |a (DE-627)DOAJ060057297 | ||
035 | |a (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a ger |a eng |a fre | ||
050 | 0 | |a QD1-999 | |
100 | 0 | |a Irina Ritsch |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pulsed EPR Methods to Study Biomolecular Interactions |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. | ||
650 | 4 | |a Deer | |
650 | 4 | |a Orthogonal spin labelling | |
650 | 4 | |a Pulsed dipolar spectroscopy | |
650 | 4 | |a Ridme | |
650 | 4 | |a Site-directed spin labelling | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Daniel Klose |e verfasserin |4 aut | |
700 | 0 | |a Henrik Hintz |e verfasserin |4 aut | |
700 | 0 | |a Adelheid Godt |e verfasserin |4 aut | |
700 | 0 | |a Gunnar Jeschke |e verfasserin |4 aut | |
700 | 0 | |a Maxim Yulikov |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t CHIMIA |d Swiss Chemical Society, 2020 |g 73(2019), 4 |w (DE-627)480660301 |w (DE-600)2179192-2 |x 26732424 |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2019 |g number:4 |
856 | 4 | 0 | |u https://doi.org/10.2533/chimia.2019.268 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 |z kostenfrei |
856 | 4 | 0 | |u https://www.chimia.ch/chimia/article/view/1226 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0009-4293 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-2424 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 73 |j 2019 |e 4 |
author_variant |
i r ir d k dk h h hh a g ag g j gj m y my |
---|---|
matchkey_str |
article:26732424:2019----::usdpmtosotdbooeu |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QD |
publishDate |
2019 |
allfields |
10.2533/chimia.2019.268 doi (DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 DE-627 ger DE-627 rakwb ger eng fre QD1-999 Irina Ritsch verfasserin aut Pulsed EPR Methods to Study Biomolecular Interactions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry Daniel Klose verfasserin aut Henrik Hintz verfasserin aut Adelheid Godt verfasserin aut Gunnar Jeschke verfasserin aut Maxim Yulikov verfasserin aut In CHIMIA Swiss Chemical Society, 2020 73(2019), 4 (DE-627)480660301 (DE-600)2179192-2 26732424 nnns volume:73 year:2019 number:4 https://doi.org/10.2533/chimia.2019.268 kostenfrei https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 kostenfrei https://www.chimia.ch/chimia/article/view/1226 kostenfrei https://doaj.org/toc/0009-4293 Journal toc kostenfrei https://doaj.org/toc/2673-2424 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2019 4 |
spelling |
10.2533/chimia.2019.268 doi (DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 DE-627 ger DE-627 rakwb ger eng fre QD1-999 Irina Ritsch verfasserin aut Pulsed EPR Methods to Study Biomolecular Interactions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry Daniel Klose verfasserin aut Henrik Hintz verfasserin aut Adelheid Godt verfasserin aut Gunnar Jeschke verfasserin aut Maxim Yulikov verfasserin aut In CHIMIA Swiss Chemical Society, 2020 73(2019), 4 (DE-627)480660301 (DE-600)2179192-2 26732424 nnns volume:73 year:2019 number:4 https://doi.org/10.2533/chimia.2019.268 kostenfrei https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 kostenfrei https://www.chimia.ch/chimia/article/view/1226 kostenfrei https://doaj.org/toc/0009-4293 Journal toc kostenfrei https://doaj.org/toc/2673-2424 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2019 4 |
allfields_unstemmed |
10.2533/chimia.2019.268 doi (DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 DE-627 ger DE-627 rakwb ger eng fre QD1-999 Irina Ritsch verfasserin aut Pulsed EPR Methods to Study Biomolecular Interactions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry Daniel Klose verfasserin aut Henrik Hintz verfasserin aut Adelheid Godt verfasserin aut Gunnar Jeschke verfasserin aut Maxim Yulikov verfasserin aut In CHIMIA Swiss Chemical Society, 2020 73(2019), 4 (DE-627)480660301 (DE-600)2179192-2 26732424 nnns volume:73 year:2019 number:4 https://doi.org/10.2533/chimia.2019.268 kostenfrei https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 kostenfrei https://www.chimia.ch/chimia/article/view/1226 kostenfrei https://doaj.org/toc/0009-4293 Journal toc kostenfrei https://doaj.org/toc/2673-2424 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2019 4 |
allfieldsGer |
10.2533/chimia.2019.268 doi (DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 DE-627 ger DE-627 rakwb ger eng fre QD1-999 Irina Ritsch verfasserin aut Pulsed EPR Methods to Study Biomolecular Interactions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry Daniel Klose verfasserin aut Henrik Hintz verfasserin aut Adelheid Godt verfasserin aut Gunnar Jeschke verfasserin aut Maxim Yulikov verfasserin aut In CHIMIA Swiss Chemical Society, 2020 73(2019), 4 (DE-627)480660301 (DE-600)2179192-2 26732424 nnns volume:73 year:2019 number:4 https://doi.org/10.2533/chimia.2019.268 kostenfrei https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 kostenfrei https://www.chimia.ch/chimia/article/view/1226 kostenfrei https://doaj.org/toc/0009-4293 Journal toc kostenfrei https://doaj.org/toc/2673-2424 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2019 4 |
allfieldsSound |
10.2533/chimia.2019.268 doi (DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 DE-627 ger DE-627 rakwb ger eng fre QD1-999 Irina Ritsch verfasserin aut Pulsed EPR Methods to Study Biomolecular Interactions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry Daniel Klose verfasserin aut Henrik Hintz verfasserin aut Adelheid Godt verfasserin aut Gunnar Jeschke verfasserin aut Maxim Yulikov verfasserin aut In CHIMIA Swiss Chemical Society, 2020 73(2019), 4 (DE-627)480660301 (DE-600)2179192-2 26732424 nnns volume:73 year:2019 number:4 https://doi.org/10.2533/chimia.2019.268 kostenfrei https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 kostenfrei https://www.chimia.ch/chimia/article/view/1226 kostenfrei https://doaj.org/toc/0009-4293 Journal toc kostenfrei https://doaj.org/toc/2673-2424 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 73 2019 4 |
language |
German English French |
source |
In CHIMIA 73(2019), 4 volume:73 year:2019 number:4 |
sourceStr |
In CHIMIA 73(2019), 4 volume:73 year:2019 number:4 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling Chemistry |
isfreeaccess_bool |
true |
container_title |
CHIMIA |
authorswithroles_txt_mv |
Irina Ritsch @@aut@@ Daniel Klose @@aut@@ Henrik Hintz @@aut@@ Adelheid Godt @@aut@@ Gunnar Jeschke @@aut@@ Maxim Yulikov @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
480660301 |
id |
DOAJ060057297 |
language_de |
deutsch englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060057297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502092042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||ger c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2533/chimia.2019.268</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060057297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Irina Ritsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed EPR Methods to Study Biomolecular Interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal spin labelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulsed dipolar spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ridme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site-directed spin labelling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Klose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henrik Hintz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adelheid Godt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gunnar Jeschke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maxim Yulikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">CHIMIA</subfield><subfield code="d">Swiss Chemical Society, 2020</subfield><subfield code="g">73(2019), 4</subfield><subfield code="w">(DE-627)480660301</subfield><subfield code="w">(DE-600)2179192-2</subfield><subfield code="x">26732424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2533/chimia.2019.268</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.chimia.ch/chimia/article/view/1226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0009-4293</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2424</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Irina Ritsch |
spellingShingle |
Irina Ritsch misc QD1-999 misc Deer misc Orthogonal spin labelling misc Pulsed dipolar spectroscopy misc Ridme misc Site-directed spin labelling misc Chemistry Pulsed EPR Methods to Study Biomolecular Interactions |
authorStr |
Irina Ritsch |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)480660301 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD1-999 |
illustrated |
Not Illustrated |
issn |
26732424 |
topic_title |
QD1-999 Pulsed EPR Methods to Study Biomolecular Interactions Deer Orthogonal spin labelling Pulsed dipolar spectroscopy Ridme Site-directed spin labelling |
topic |
misc QD1-999 misc Deer misc Orthogonal spin labelling misc Pulsed dipolar spectroscopy misc Ridme misc Site-directed spin labelling misc Chemistry |
topic_unstemmed |
misc QD1-999 misc Deer misc Orthogonal spin labelling misc Pulsed dipolar spectroscopy misc Ridme misc Site-directed spin labelling misc Chemistry |
topic_browse |
misc QD1-999 misc Deer misc Orthogonal spin labelling misc Pulsed dipolar spectroscopy misc Ridme misc Site-directed spin labelling misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
CHIMIA |
hierarchy_parent_id |
480660301 |
hierarchy_top_title |
CHIMIA |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)480660301 (DE-600)2179192-2 |
title |
Pulsed EPR Methods to Study Biomolecular Interactions |
ctrlnum |
(DE-627)DOAJ060057297 (DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3 |
title_full |
Pulsed EPR Methods to Study Biomolecular Interactions |
author_sort |
Irina Ritsch |
journal |
CHIMIA |
journalStr |
CHIMIA |
callnumber-first-code |
Q |
lang_code |
ger eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Irina Ritsch Daniel Klose Henrik Hintz Adelheid Godt Gunnar Jeschke Maxim Yulikov |
container_volume |
73 |
class |
QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Irina Ritsch |
doi_str_mv |
10.2533/chimia.2019.268 |
author2-role |
verfasserin |
title_sort |
pulsed epr methods to study biomolecular interactions |
callnumber |
QD1-999 |
title_auth |
Pulsed EPR Methods to Study Biomolecular Interactions |
abstract |
Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. |
abstractGer |
Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. |
abstract_unstemmed |
Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Pulsed EPR Methods to Study Biomolecular Interactions |
url |
https://doi.org/10.2533/chimia.2019.268 https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3 https://www.chimia.ch/chimia/article/view/1226 https://doaj.org/toc/0009-4293 https://doaj.org/toc/2673-2424 |
remote_bool |
true |
author2 |
Daniel Klose Henrik Hintz Adelheid Godt Gunnar Jeschke Maxim Yulikov |
author2Str |
Daniel Klose Henrik Hintz Adelheid Godt Gunnar Jeschke Maxim Yulikov |
ppnlink |
480660301 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.2533/chimia.2019.268 |
callnumber-a |
QD1-999 |
up_date |
2024-07-04T01:53:22.223Z |
_version_ |
1803611539741081600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060057297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502092042.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||ger c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2533/chimia.2019.268</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060057297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0f35d1a1914f4f54a57c621e9a738ca3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Irina Ritsch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed EPR Methods to Study Biomolecular Interactions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthogonal site-directed spin labelling in combination with pulsed EPR spectroscopy is a powerful approach to study biomolecular interactions on a molecular level. Following a surge in pulse EPR method development, it is now possible to access distance distributions in the nanometre range in systems of complex composition. In this article we briefly outline the necessary considerations for measurements of distance distributions in macromolecular systems labelled with two or more different types of paramagnetic centres. We illustrate the approach with two examples: an application of the Double Electron-Electron Resonance (DEER) method on a triple spin-labelled protein dimer labelled with nitroxide and Gd(III), and an optimisation study of the Relaxation Induced Dipolar Modulation Enhancement (RIDME) experiment for the orthogonal spin pair Cu(II)-nitroxide.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal spin labelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulsed dipolar spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ridme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Site-directed spin labelling</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daniel Klose</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Henrik Hintz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Adelheid Godt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gunnar Jeschke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maxim Yulikov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">CHIMIA</subfield><subfield code="d">Swiss Chemical Society, 2020</subfield><subfield code="g">73(2019), 4</subfield><subfield code="w">(DE-627)480660301</subfield><subfield code="w">(DE-600)2179192-2</subfield><subfield code="x">26732424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.2533/chimia.2019.268</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0f35d1a1914f4f54a57c621e9a738ca3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.chimia.ch/chimia/article/view/1226</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0009-4293</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-2424</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield></datafield></record></collection>
|
score |
7.399684 |