Multiplicative topological indices of honeycomb derived networks
Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related t...
Ausführliche Beschreibung
Autor*in: |
Tang Jiang-Hua [verfasserIn] Habib Mustafa [verfasserIn] Younas Muhammad [verfasserIn] Yousaf Muhammad [verfasserIn] Nazeer Waqas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Open Physics - De Gruyter, 2015, 17(2019), 1, Seite 16-30 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2019 ; number:1 ; pages:16-30 |
Links: |
---|
DOI / URN: |
10.1515/phys-2019-0003 |
---|
Katalog-ID: |
DOAJ060167025 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060167025 | ||
003 | DE-627 | ||
005 | 20230309001235.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/phys-2019-0003 |2 doi | |
035 | |a (DE-627)DOAJ060167025 | ||
035 | |a (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a Tang Jiang-Hua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiplicative topological indices of honeycomb derived networks |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. | ||
650 | 4 | |a honeycomb network | |
650 | 4 | |a topological index | |
650 | 4 | |a degree | |
650 | 4 | |a chemical graph theory | |
650 | 4 | |a 81.05-t | |
650 | 4 | |a 81.07.nb | |
653 | 0 | |a Physics | |
700 | 0 | |a Habib Mustafa |e verfasserin |4 aut | |
700 | 0 | |a Younas Muhammad |e verfasserin |4 aut | |
700 | 0 | |a Yousaf Muhammad |e verfasserin |4 aut | |
700 | 0 | |a Nazeer Waqas |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Open Physics |d De Gruyter, 2015 |g 17(2019), 1, Seite 16-30 |w (DE-627)820684708 |w (DE-600)2814058-8 |x 23915471 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2019 |g number:1 |g pages:16-30 |
856 | 4 | 0 | |u https://doi.org/10.1515/phys-2019-0003 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/phys-2019-0003 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2391-5471 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2019 |e 1 |h 16-30 |
author_variant |
t j h tjh h m hm y m ym y m ym n w nw |
---|---|
matchkey_str |
article:23915471:2019----::utpiaieoooiaidcsfoecm |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QC |
publishDate |
2019 |
allfields |
10.1515/phys-2019-0003 doi (DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 DE-627 ger DE-627 rakwb eng QC1-999 Tang Jiang-Hua verfasserin aut Multiplicative topological indices of honeycomb derived networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics Habib Mustafa verfasserin aut Younas Muhammad verfasserin aut Yousaf Muhammad verfasserin aut Nazeer Waqas verfasserin aut In Open Physics De Gruyter, 2015 17(2019), 1, Seite 16-30 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:17 year:2019 number:1 pages:16-30 https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 kostenfrei https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 16-30 |
spelling |
10.1515/phys-2019-0003 doi (DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 DE-627 ger DE-627 rakwb eng QC1-999 Tang Jiang-Hua verfasserin aut Multiplicative topological indices of honeycomb derived networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics Habib Mustafa verfasserin aut Younas Muhammad verfasserin aut Yousaf Muhammad verfasserin aut Nazeer Waqas verfasserin aut In Open Physics De Gruyter, 2015 17(2019), 1, Seite 16-30 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:17 year:2019 number:1 pages:16-30 https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 kostenfrei https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 16-30 |
allfields_unstemmed |
10.1515/phys-2019-0003 doi (DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 DE-627 ger DE-627 rakwb eng QC1-999 Tang Jiang-Hua verfasserin aut Multiplicative topological indices of honeycomb derived networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics Habib Mustafa verfasserin aut Younas Muhammad verfasserin aut Yousaf Muhammad verfasserin aut Nazeer Waqas verfasserin aut In Open Physics De Gruyter, 2015 17(2019), 1, Seite 16-30 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:17 year:2019 number:1 pages:16-30 https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 kostenfrei https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 16-30 |
allfieldsGer |
10.1515/phys-2019-0003 doi (DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 DE-627 ger DE-627 rakwb eng QC1-999 Tang Jiang-Hua verfasserin aut Multiplicative topological indices of honeycomb derived networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics Habib Mustafa verfasserin aut Younas Muhammad verfasserin aut Yousaf Muhammad verfasserin aut Nazeer Waqas verfasserin aut In Open Physics De Gruyter, 2015 17(2019), 1, Seite 16-30 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:17 year:2019 number:1 pages:16-30 https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 kostenfrei https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 16-30 |
allfieldsSound |
10.1515/phys-2019-0003 doi (DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 DE-627 ger DE-627 rakwb eng QC1-999 Tang Jiang-Hua verfasserin aut Multiplicative topological indices of honeycomb derived networks 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics Habib Mustafa verfasserin aut Younas Muhammad verfasserin aut Yousaf Muhammad verfasserin aut Nazeer Waqas verfasserin aut In Open Physics De Gruyter, 2015 17(2019), 1, Seite 16-30 (DE-627)820684708 (DE-600)2814058-8 23915471 nnns volume:17 year:2019 number:1 pages:16-30 https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 kostenfrei https://doi.org/10.1515/phys-2019-0003 kostenfrei https://doaj.org/toc/2391-5471 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 16-30 |
language |
English |
source |
In Open Physics 17(2019), 1, Seite 16-30 volume:17 year:2019 number:1 pages:16-30 |
sourceStr |
In Open Physics 17(2019), 1, Seite 16-30 volume:17 year:2019 number:1 pages:16-30 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb Physics |
isfreeaccess_bool |
true |
container_title |
Open Physics |
authorswithroles_txt_mv |
Tang Jiang-Hua @@aut@@ Habib Mustafa @@aut@@ Younas Muhammad @@aut@@ Yousaf Muhammad @@aut@@ Nazeer Waqas @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
820684708 |
id |
DOAJ060167025 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060167025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309001235.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/phys-2019-0003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060167025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tang Jiang-Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative topological indices of honeycomb derived networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">honeycomb network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">81.05-t</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">81.07.nb</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Habib Mustafa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Younas Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yousaf Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nazeer Waqas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Physics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">17(2019), 1, Seite 16-30</subfield><subfield code="w">(DE-627)820684708</subfield><subfield code="w">(DE-600)2814058-8</subfield><subfield code="x">23915471</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16-30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2019-0003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2019-0003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5471</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">16-30</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Tang Jiang-Hua |
spellingShingle |
Tang Jiang-Hua misc QC1-999 misc honeycomb network misc topological index misc degree misc chemical graph theory misc 81.05-t misc 81.07.nb misc Physics Multiplicative topological indices of honeycomb derived networks |
authorStr |
Tang Jiang-Hua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)820684708 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
23915471 |
topic_title |
QC1-999 Multiplicative topological indices of honeycomb derived networks honeycomb network topological index degree chemical graph theory 81.05-t 81.07.nb |
topic |
misc QC1-999 misc honeycomb network misc topological index misc degree misc chemical graph theory misc 81.05-t misc 81.07.nb misc Physics |
topic_unstemmed |
misc QC1-999 misc honeycomb network misc topological index misc degree misc chemical graph theory misc 81.05-t misc 81.07.nb misc Physics |
topic_browse |
misc QC1-999 misc honeycomb network misc topological index misc degree misc chemical graph theory misc 81.05-t misc 81.07.nb misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Open Physics |
hierarchy_parent_id |
820684708 |
hierarchy_top_title |
Open Physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)820684708 (DE-600)2814058-8 |
title |
Multiplicative topological indices of honeycomb derived networks |
ctrlnum |
(DE-627)DOAJ060167025 (DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64 |
title_full |
Multiplicative topological indices of honeycomb derived networks |
author_sort |
Tang Jiang-Hua |
journal |
Open Physics |
journalStr |
Open Physics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
16 |
author_browse |
Tang Jiang-Hua Habib Mustafa Younas Muhammad Yousaf Muhammad Nazeer Waqas |
container_volume |
17 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Tang Jiang-Hua |
doi_str_mv |
10.1515/phys-2019-0003 |
author2-role |
verfasserin |
title_sort |
multiplicative topological indices of honeycomb derived networks |
callnumber |
QC1-999 |
title_auth |
Multiplicative topological indices of honeycomb derived networks |
abstract |
Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. |
abstractGer |
Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. |
abstract_unstemmed |
Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Multiplicative topological indices of honeycomb derived networks |
url |
https://doi.org/10.1515/phys-2019-0003 https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64 https://doaj.org/toc/2391-5471 |
remote_bool |
true |
author2 |
Habib Mustafa Younas Muhammad Yousaf Muhammad Nazeer Waqas |
author2Str |
Habib Mustafa Younas Muhammad Yousaf Muhammad Nazeer Waqas |
ppnlink |
820684708 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/phys-2019-0003 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T13:22:36.324Z |
_version_ |
1803564305695637504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060167025</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309001235.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/phys-2019-0003</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060167025</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2b17bf4bb6704852ba110e7dacc20f64</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Tang Jiang-Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative topological indices of honeycomb derived networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Topological indices are the numerical values associated with chemical structures that correlate physico-chemical properties with structural properties. There are various classes of topological indices such as degree based topological indices, distance based topological indices and counting related topological indices. Among these classes, degree based topological indices are of great importance and play a vital role in chemical graph theory, particularly in chemistry. In this report, we have computed the multiplicative degree based topological indices of honeycomb derived networks of dimensions I, 2, 3 and 4.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">honeycomb network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topological index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">degree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">81.05-t</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">81.07.nb</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Habib Mustafa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Younas Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yousaf Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nazeer Waqas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Physics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">17(2019), 1, Seite 16-30</subfield><subfield code="w">(DE-627)820684708</subfield><subfield code="w">(DE-600)2814058-8</subfield><subfield code="x">23915471</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:16-30</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2019-0003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2b17bf4bb6704852ba110e7dacc20f64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/phys-2019-0003</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5471</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">16-30</subfield></datafield></record></collection>
|
score |
7.4011383 |