Centralizers of automorphisms permuting free generators
By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the f...
Ausführliche Beschreibung
Autor*in: |
Macedońska Olga [verfasserIn] Tomaszewski Witold [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Open Mathematics - De Gruyter, 2015, 17(2019), 1, Seite 15-22 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2019 ; number:1 ; pages:15-22 |
Links: |
---|
DOI / URN: |
10.1515/math-2019-0007 |
---|
Katalog-ID: |
DOAJ060189843 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060189843 | ||
003 | DE-627 | ||
005 | 20230309001332.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/math-2019-0007 |2 doi | |
035 | |a (DE-627)DOAJ060189843 | ||
035 | |a (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Macedońska Olga |e verfasserin |4 aut | |
245 | 1 | 0 | |a Centralizers of automorphisms permuting free generators |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). | ||
650 | 4 | |a permutation | |
650 | 4 | |a centralizer | |
650 | 4 | |a automorphism | |
650 | 4 | |a 20e05 | |
650 | 4 | |a 20e36 | |
650 | 4 | |a 20f28 | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Tomaszewski Witold |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Open Mathematics |d De Gruyter, 2015 |g 17(2019), 1, Seite 15-22 |w (DE-627)823698734 |w (DE-600)2818690-4 |x 23915455 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2019 |g number:1 |g pages:15-22 |
856 | 4 | 0 | |u https://doi.org/10.1515/math-2019-0007 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/math-2019-0007 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2391-5455 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2019 |e 1 |h 15-22 |
author_variant |
m o mo t w tw |
---|---|
matchkey_str |
article:23915455:2019----::etaiesfuoopimpruig |
hierarchy_sort_str |
2019 |
callnumber-subject-code |
QA |
publishDate |
2019 |
allfields |
10.1515/math-2019-0007 doi (DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 DE-627 ger DE-627 rakwb eng QA1-939 Macedońska Olga verfasserin aut Centralizers of automorphisms permuting free generators 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). permutation centralizer automorphism 20e05 20e36 20f28 Mathematics Tomaszewski Witold verfasserin aut In Open Mathematics De Gruyter, 2015 17(2019), 1, Seite 15-22 (DE-627)823698734 (DE-600)2818690-4 23915455 nnns volume:17 year:2019 number:1 pages:15-22 https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 kostenfrei https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/toc/2391-5455 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 15-22 |
spelling |
10.1515/math-2019-0007 doi (DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 DE-627 ger DE-627 rakwb eng QA1-939 Macedońska Olga verfasserin aut Centralizers of automorphisms permuting free generators 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). permutation centralizer automorphism 20e05 20e36 20f28 Mathematics Tomaszewski Witold verfasserin aut In Open Mathematics De Gruyter, 2015 17(2019), 1, Seite 15-22 (DE-627)823698734 (DE-600)2818690-4 23915455 nnns volume:17 year:2019 number:1 pages:15-22 https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 kostenfrei https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/toc/2391-5455 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 15-22 |
allfields_unstemmed |
10.1515/math-2019-0007 doi (DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 DE-627 ger DE-627 rakwb eng QA1-939 Macedońska Olga verfasserin aut Centralizers of automorphisms permuting free generators 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). permutation centralizer automorphism 20e05 20e36 20f28 Mathematics Tomaszewski Witold verfasserin aut In Open Mathematics De Gruyter, 2015 17(2019), 1, Seite 15-22 (DE-627)823698734 (DE-600)2818690-4 23915455 nnns volume:17 year:2019 number:1 pages:15-22 https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 kostenfrei https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/toc/2391-5455 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 15-22 |
allfieldsGer |
10.1515/math-2019-0007 doi (DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 DE-627 ger DE-627 rakwb eng QA1-939 Macedońska Olga verfasserin aut Centralizers of automorphisms permuting free generators 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). permutation centralizer automorphism 20e05 20e36 20f28 Mathematics Tomaszewski Witold verfasserin aut In Open Mathematics De Gruyter, 2015 17(2019), 1, Seite 15-22 (DE-627)823698734 (DE-600)2818690-4 23915455 nnns volume:17 year:2019 number:1 pages:15-22 https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 kostenfrei https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/toc/2391-5455 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 15-22 |
allfieldsSound |
10.1515/math-2019-0007 doi (DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 DE-627 ger DE-627 rakwb eng QA1-939 Macedońska Olga verfasserin aut Centralizers of automorphisms permuting free generators 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). permutation centralizer automorphism 20e05 20e36 20f28 Mathematics Tomaszewski Witold verfasserin aut In Open Mathematics De Gruyter, 2015 17(2019), 1, Seite 15-22 (DE-627)823698734 (DE-600)2818690-4 23915455 nnns volume:17 year:2019 number:1 pages:15-22 https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 kostenfrei https://doi.org/10.1515/math-2019-0007 kostenfrei https://doaj.org/toc/2391-5455 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2019 1 15-22 |
language |
English |
source |
In Open Mathematics 17(2019), 1, Seite 15-22 volume:17 year:2019 number:1 pages:15-22 |
sourceStr |
In Open Mathematics 17(2019), 1, Seite 15-22 volume:17 year:2019 number:1 pages:15-22 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
permutation centralizer automorphism 20e05 20e36 20f28 Mathematics |
isfreeaccess_bool |
true |
container_title |
Open Mathematics |
authorswithroles_txt_mv |
Macedońska Olga @@aut@@ Tomaszewski Witold @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
823698734 |
id |
DOAJ060189843 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060189843</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309001332.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/math-2019-0007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060189843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc8331db628794c7f87075e08910f3ff4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Macedońska Olga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Centralizers of automorphisms permuting free generators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permutation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">centralizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20e05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20e36</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20f28</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomaszewski Witold</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Mathematics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">17(2019), 1, Seite 15-22</subfield><subfield code="w">(DE-627)823698734</subfield><subfield code="w">(DE-600)2818690-4</subfield><subfield code="x">23915455</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15-22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/math-2019-0007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c8331db628794c7f87075e08910f3ff4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/math-2019-0007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5455</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">15-22</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Macedońska Olga |
spellingShingle |
Macedońska Olga misc QA1-939 misc permutation misc centralizer misc automorphism misc 20e05 misc 20e36 misc 20f28 misc Mathematics Centralizers of automorphisms permuting free generators |
authorStr |
Macedońska Olga |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)823698734 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
23915455 |
topic_title |
QA1-939 Centralizers of automorphisms permuting free generators permutation centralizer automorphism 20e05 20e36 20f28 |
topic |
misc QA1-939 misc permutation misc centralizer misc automorphism misc 20e05 misc 20e36 misc 20f28 misc Mathematics |
topic_unstemmed |
misc QA1-939 misc permutation misc centralizer misc automorphism misc 20e05 misc 20e36 misc 20f28 misc Mathematics |
topic_browse |
misc QA1-939 misc permutation misc centralizer misc automorphism misc 20e05 misc 20e36 misc 20f28 misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Open Mathematics |
hierarchy_parent_id |
823698734 |
hierarchy_top_title |
Open Mathematics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)823698734 (DE-600)2818690-4 |
title |
Centralizers of automorphisms permuting free generators |
ctrlnum |
(DE-627)DOAJ060189843 (DE-599)DOAJc8331db628794c7f87075e08910f3ff4 |
title_full |
Centralizers of automorphisms permuting free generators |
author_sort |
Macedońska Olga |
journal |
Open Mathematics |
journalStr |
Open Mathematics |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
15 |
author_browse |
Macedońska Olga Tomaszewski Witold |
container_volume |
17 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Macedońska Olga |
doi_str_mv |
10.1515/math-2019-0007 |
author2-role |
verfasserin |
title_sort |
centralizers of automorphisms permuting free generators |
callnumber |
QA1-939 |
title_auth |
Centralizers of automorphisms permuting free generators |
abstract |
By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). |
abstractGer |
By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). |
abstract_unstemmed |
By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Centralizers of automorphisms permuting free generators |
url |
https://doi.org/10.1515/math-2019-0007 https://doaj.org/article/c8331db628794c7f87075e08910f3ff4 https://doaj.org/toc/2391-5455 |
remote_bool |
true |
author2 |
Tomaszewski Witold |
author2Str |
Tomaszewski Witold |
ppnlink |
823698734 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/math-2019-0007 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T13:30:29.254Z |
_version_ |
1803564801606025216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060189843</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309001332.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/math-2019-0007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060189843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc8331db628794c7f87075e08910f3ff4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Macedońska Olga</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Centralizers of automorphisms permuting free generators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">By σ ∈ Skm we denote a permutation of the cycle-type km and also the induced automorphism permuting subscripts of free generators in the free group Fkm. It is known that the centralizer of the permutation σ in Skm is isomorphic to a wreath product Zk ≀ Sm and is generated by its two subgroups: the first one is isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$, the direct product of m cyclic groups of order k, and the second one is Sm. We show that the centralizer of the automorphism σ ∈ Aut(Fkm) is generated by its subgroups isomorphic to Zkm$\begin{array}{} \displaystyle Z_k^m \end{array}$ and Aut(Fm).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">permutation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">centralizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20e05</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20e36</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">20f28</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tomaszewski Witold</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Open Mathematics</subfield><subfield code="d">De Gruyter, 2015</subfield><subfield code="g">17(2019), 1, Seite 15-22</subfield><subfield code="w">(DE-627)823698734</subfield><subfield code="w">(DE-600)2818690-4</subfield><subfield code="x">23915455</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:15-22</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/math-2019-0007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c8331db628794c7f87075e08910f3ff4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/math-2019-0007</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2391-5455</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="h">15-22</subfield></datafield></record></collection>
|
score |
7.401717 |