Modelling of HIV prevention and treatment progress in five South African metropolitan districts
Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission...
Ausführliche Beschreibung
Autor*in: |
Cari van Schalkwyk [verfasserIn] Rob E. Dorrington [verfasserIn] Thapelo Seatlhodi [verfasserIn] Claudia Velasquez [verfasserIn] Ali Feizzadeh [verfasserIn] Leigh F. Johnson [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: Scientific Reports - Nature Portfolio, 2011, 11(2021), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2021 ; number:1 ; pages:10 |
Links: |
---|
DOI / URN: |
10.1038/s41598-021-85154-0 |
---|
Katalog-ID: |
DOAJ060612126 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ060612126 | ||
003 | DE-627 | ||
005 | 20230309003414.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230228s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/s41598-021-85154-0 |2 doi | |
035 | |a (DE-627)DOAJ060612126 | ||
035 | |a (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Cari van Schalkwyk |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Rob E. Dorrington |e verfasserin |4 aut | |
700 | 0 | |a Thapelo Seatlhodi |e verfasserin |4 aut | |
700 | 0 | |a Claudia Velasquez |e verfasserin |4 aut | |
700 | 0 | |a Ali Feizzadeh |e verfasserin |4 aut | |
700 | 0 | |a Leigh F. Johnson |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Scientific Reports |d Nature Portfolio, 2011 |g 11(2021), 1, Seite 10 |w (DE-627)663366712 |w (DE-600)2615211-3 |x 20452322 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2021 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-021-85154-0 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1038/s41598-021-85154-0 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2045-2322 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2021 |e 1 |h 10 |
author_variant |
c v s cvs r e d red t s ts c v cv a f af l f j lfj |
---|---|
matchkey_str |
article:20452322:2021----::oelnohvrvninntetetrgesnieotarc |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1038/s41598-021-85154-0 doi (DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 DE-627 ger DE-627 rakwb eng Cari van Schalkwyk verfasserin aut Modelling of HIV prevention and treatment progress in five South African metropolitan districts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. Medicine R Science Q Rob E. Dorrington verfasserin aut Thapelo Seatlhodi verfasserin aut Claudia Velasquez verfasserin aut Ali Feizzadeh verfasserin aut Leigh F. Johnson verfasserin aut In Scientific Reports Nature Portfolio, 2011 11(2021), 1, Seite 10 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:11 year:2021 number:1 pages:10 https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 kostenfrei https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1 10 |
spelling |
10.1038/s41598-021-85154-0 doi (DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 DE-627 ger DE-627 rakwb eng Cari van Schalkwyk verfasserin aut Modelling of HIV prevention and treatment progress in five South African metropolitan districts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. Medicine R Science Q Rob E. Dorrington verfasserin aut Thapelo Seatlhodi verfasserin aut Claudia Velasquez verfasserin aut Ali Feizzadeh verfasserin aut Leigh F. Johnson verfasserin aut In Scientific Reports Nature Portfolio, 2011 11(2021), 1, Seite 10 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:11 year:2021 number:1 pages:10 https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 kostenfrei https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1 10 |
allfields_unstemmed |
10.1038/s41598-021-85154-0 doi (DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 DE-627 ger DE-627 rakwb eng Cari van Schalkwyk verfasserin aut Modelling of HIV prevention and treatment progress in five South African metropolitan districts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. Medicine R Science Q Rob E. Dorrington verfasserin aut Thapelo Seatlhodi verfasserin aut Claudia Velasquez verfasserin aut Ali Feizzadeh verfasserin aut Leigh F. Johnson verfasserin aut In Scientific Reports Nature Portfolio, 2011 11(2021), 1, Seite 10 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:11 year:2021 number:1 pages:10 https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 kostenfrei https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1 10 |
allfieldsGer |
10.1038/s41598-021-85154-0 doi (DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 DE-627 ger DE-627 rakwb eng Cari van Schalkwyk verfasserin aut Modelling of HIV prevention and treatment progress in five South African metropolitan districts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. Medicine R Science Q Rob E. Dorrington verfasserin aut Thapelo Seatlhodi verfasserin aut Claudia Velasquez verfasserin aut Ali Feizzadeh verfasserin aut Leigh F. Johnson verfasserin aut In Scientific Reports Nature Portfolio, 2011 11(2021), 1, Seite 10 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:11 year:2021 number:1 pages:10 https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 kostenfrei https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1 10 |
allfieldsSound |
10.1038/s41598-021-85154-0 doi (DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 DE-627 ger DE-627 rakwb eng Cari van Schalkwyk verfasserin aut Modelling of HIV prevention and treatment progress in five South African metropolitan districts 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. Medicine R Science Q Rob E. Dorrington verfasserin aut Thapelo Seatlhodi verfasserin aut Claudia Velasquez verfasserin aut Ali Feizzadeh verfasserin aut Leigh F. Johnson verfasserin aut In Scientific Reports Nature Portfolio, 2011 11(2021), 1, Seite 10 (DE-627)663366712 (DE-600)2615211-3 20452322 nnns volume:11 year:2021 number:1 pages:10 https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 kostenfrei https://doi.org/10.1038/s41598-021-85154-0 kostenfrei https://doaj.org/toc/2045-2322 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2021 1 10 |
language |
English |
source |
In Scientific Reports 11(2021), 1, Seite 10 volume:11 year:2021 number:1 pages:10 |
sourceStr |
In Scientific Reports 11(2021), 1, Seite 10 volume:11 year:2021 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
Scientific Reports |
authorswithroles_txt_mv |
Cari van Schalkwyk @@aut@@ Rob E. Dorrington @@aut@@ Thapelo Seatlhodi @@aut@@ Claudia Velasquez @@aut@@ Ali Feizzadeh @@aut@@ Leigh F. Johnson @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
663366712 |
id |
DOAJ060612126 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060612126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309003414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-021-85154-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060612126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce830dffcc6947a59d01f6e052498c70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cari van Schalkwyk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling of HIV prevention and treatment progress in five South African metropolitan districts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rob E. Dorrington</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thapelo Seatlhodi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Velasquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Feizzadeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leigh F. Johnson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">11(2021), 1, Seite 10</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-85154-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-85154-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
author |
Cari van Schalkwyk |
spellingShingle |
Cari van Schalkwyk misc Medicine misc R misc Science misc Q Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
authorStr |
Cari van Schalkwyk |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)663366712 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20452322 |
topic_title |
Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Scientific Reports |
hierarchy_parent_id |
663366712 |
hierarchy_top_title |
Scientific Reports |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)663366712 (DE-600)2615211-3 |
title |
Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
ctrlnum |
(DE-627)DOAJ060612126 (DE-599)DOAJce830dffcc6947a59d01f6e052498c70 |
title_full |
Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
author_sort |
Cari van Schalkwyk |
journal |
Scientific Reports |
journalStr |
Scientific Reports |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Cari van Schalkwyk Rob E. Dorrington Thapelo Seatlhodi Claudia Velasquez Ali Feizzadeh Leigh F. Johnson |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Cari van Schalkwyk |
doi_str_mv |
10.1038/s41598-021-85154-0 |
author2-role |
verfasserin |
title_sort |
modelling of hiv prevention and treatment progress in five south african metropolitan districts |
title_auth |
Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
abstract |
Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. |
abstractGer |
Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. |
abstract_unstemmed |
Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Modelling of HIV prevention and treatment progress in five South African metropolitan districts |
url |
https://doi.org/10.1038/s41598-021-85154-0 https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70 https://doaj.org/toc/2045-2322 |
remote_bool |
true |
author2 |
Rob E. Dorrington Thapelo Seatlhodi Claudia Velasquez Ali Feizzadeh Leigh F. Johnson |
author2Str |
Rob E. Dorrington Thapelo Seatlhodi Claudia Velasquez Ali Feizzadeh Leigh F. Johnson |
ppnlink |
663366712 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1038/s41598-021-85154-0 |
up_date |
2024-07-03T16:01:11.171Z |
_version_ |
1803574282740039680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ060612126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230309003414.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230228s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/s41598-021-85154-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ060612126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJce830dffcc6947a59d01f6e052498c70</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Cari van Schalkwyk</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling of HIV prevention and treatment progress in five South African metropolitan districts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Globally, large proportions of HIV-positive populations live in cities. The Fast-Track cities project aims to advance progress toward elimination of HIV as a public health threat by accelerating the response in cities across the world. This study applies a well-established HIV transmission model to provide key HIV estimates for the five largest metropolitan districts in South Africa (SA): Cape Town, Ekurhuleni, eThekwini, Johannesburg and Tshwane. We calibrate the model to metro-specific data sources and estimate progress toward the 90-90-90 targets set by UNAIDS (90% of people living with HIV (PLHIV) diagnosed, 90% of those diagnosed on antiretroviral therapy (ART) and viral suppression in 90% of those on ART). We use the model to predict progress towards similarly defined 95-95-95 targets in 2030. In SA, 90.5% of PLHIV were diagnosed in 2018, with metro estimates ranging from 86% in Johannesburg to 92% in eThekwini. However, only 68.4% of HIV-diagnosed individuals nationally were on ART in 2018, with the proportion ranging from 56% in Tshwane to 73% in eThekwini. Fractions of ART users who were virally suppressed ranged from 77% in Ekurhuleni to 91% in eThekwini, compared to 86% in the whole country. All five metros are making good progress to reach diagnosis targets and all (with the exception of Ekurhuleni) are expected to reach viral suppression targets in 2020. However, the metros and South Africa face severe challenges in reaching the 90% ART treatment target.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rob E. Dorrington</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Thapelo Seatlhodi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Velasquez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ali Feizzadeh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leigh F. Johnson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Scientific Reports</subfield><subfield code="d">Nature Portfolio, 2011</subfield><subfield code="g">11(2021), 1, Seite 10</subfield><subfield code="w">(DE-627)663366712</subfield><subfield code="w">(DE-600)2615211-3</subfield><subfield code="x">20452322</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-85154-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ce830dffcc6947a59d01f6e052498c70</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1038/s41598-021-85154-0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2045-2322</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2021</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.40131 |